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ABSTRACT

This paper briefly discusses a number of software tools developed at the anthor’s studio through
the course of research work into algorithmic composition. Most of the tools developed are directly
related to recursive techniques: some, however, arise from more general techniques of algorithmic
composition lirst described by Joseph Schillinger. Examples of recursive techniques include:

* META-FRACTALS- separating musical content from recursive structure
= the Lorenz attractor and Koch snowllake as musical generators

* licrated Function Systems as musical generator

« dynamic values in the logistic equation and the Mandelbrot set.

Non-recursive tools include:

» the Intelligent Interval Tool- a form of limited contrapuntal intelligence
» the Harmonic Activator - Schillinger arpeggiation tool

* the Arbitrary Pattern Generator

* the smart duration operator

* the Granulator - applying a granular synthesis process at the note-level

It is hoped that the brief descriptions of these functions will stimulate the imagination of other
COMPOSErs.

RECURSIVE TECHNIQUES

Most of the software tools developed during the past year have resulted from the author's
continuing research into methods of algorithmic composition using recursive techniques, generally
known as fractals. What follows are brief descriptions of several of these tools.



META-FRACTALS

In past experiments with classic fractals such as the Mandclbrot set and its real number counterpart
the logistic equation, I have used the output of the equation, suitably scaled, as a direct index to
MIDI note number (i.e. pitch), MIDI note velocity, or some other MIDI parameter such as
continuous controller values. The notion of meta-fractals is simply this: to replace this simple
1:1 relationship with a more musically meaningful one. Thus, the output value becomes an index
into a set of musical components, which are arranged by the recursive process into a self-similar
structure. This separation of the algorithm from the musical content allows scope for several types
of musical activity not previously possible with fractals.

Such a strategy also has a relation to the concept of moment form as defined by composers such as
Stockhausen and Messiaen: “a succession of self-contained sections which do not relate to each
other in any functionally implicative manner.” (Kramer, Moment Form in Twentieth Century
Music). Kramer continues:

The crisis for the listener is extreme; it is no surprise that discontinuous contemporary music
is often not understood by its audience. To remove continuity is to question the very
meaning of time in our culture and hence of human existence. This questioning is going all
around us, and its strongest statement is found in contemporary art. By dealing with the
resulting apparent chaos of this arl, we are forced to understand our culture and hence to
grow. (Kramer, p.55, italics mine)

It is interesting (o not that dynamical systems, which arise {rom the need to rationally comprehend
change in time, can in this way themselves become the means by which the perception of time is
destroyed.

Several variations of implementation of meta-fractals are possible. Some of those that I've
cataloged are:

i) The simplest type is similar to a 1:1 mapping, but with a single layer of indirection
through a lookup table. For example, an output value of, say, 48 (corresponding to
MIDI note number 48 - cello ‘c’) could result instead in 99, or any other MIDI note
number. The principle use of this method is to restrict the continuous real number
output of the recursive process to a more musically meaningful set, for example, the
notes of a particular pitch mode or instrumental range.

ii) The next level of complexity is a big step forward. A single output value can be made to
produce a motive: a small (typically two to four note) musical gesture. Motivic
composition is a method typical of the European masters of the 19th century
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( fig. 1 - Rudolf Reti, analysis of motives from Beethoven, Pathetique Sonata, from Cook, p.99)

11} Complete musical events can also be specified, for example, an arpeggiated chord
across several instruments, with independent control of pitch bend and velocity for each
note. This amounts to a method of algorithmically determining the orchestration and
the dynamics, two musical parameters that in the past have eluded meaningful attempts
at fractal control. In effect, the recursive process can be used to create a moment form:
a set ol phrases, picces, or musical gestures unrelated by functional implications.

iv) The musical elements can consist of components of an existing composition, e.g.
phrases from a Mozart symphony, or pianistic gestures from a Chopin sonata.
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(fig. 2 - musical example showing indirect cutput generated from Reti's motivic analysis, above)

v) The musical elements can consist of short musical phrases themselves produced by a
fractal process, thus extending the sell-similarity of structure to another level.
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Meta-Fractals directly address the discontinuity of perceptual levels in applying recursive processes
to music that I have noted (Degazio, 1986). They do this by allowing different processes to
dominate at different levels,

THE LORENZ ATTRACTOR

Historically, the Lorenz attractor was one ol the [irst dynamical systems shown to exhibit complex
and unpredictable (chaotic) behavior. It arose in connection with weather prediction in a paper by
Edward N. Lorenz in 1963. The three inter-related equations are:

x'=a*(y-x)
y'=b¥*x-y-x*z
#'=x¥*y-c¥z

Whether by suggestion or purpose, this model proves, when mapped to a continuously variable
parameter such as pitch, volume, or timbre (e.g. FM modulator index) to be extremely suggestive
of the ebb and flow of such natural phenomena as wind and waves. The quality that seems to
account for this is its near-predictability combined with its chaotic behavior. The equations in fact
trace out a simple series of quasi sine waves - the element of predictability. The waves are,
however, broken at unpredictable intervals by sudden changes of direction and amplitude - the
element of chaos.

When used to directly generate sample data for reproduction as audio through a commercial
sampling device, the Lorenz attractor creates an unusual low frequency oscillation. Perhaps
because of its historical connection with weather prediction, this result is again extremely
suggestive of natural phenomena, this time of an carthgquake rumble. T used this sound for the San
Francisco earthquake sequence in the IMAX film Blue Planet.



Mapped to MIDI data, another application was to herald the approaching storm in the media opera
Tesla: The Man Who Invented the Twentieth Century. In this instance the attractor’s outputs were
applied to pitch bend (detuning) across three channels of synthesizers, producing the aural
equivalent of Tesla’s interference waves within the Earth. A third application was to simulate a
natural choral vibrato when applied as pitch bend to six channels of sampled vocal sounds. The
result was for more attractive to the ear than a regular LFO induced vibrato. The multiple outputs
are correlated in such a way that they never meet at a common point.

RECURSIVE PATTERN GENERATOR

MIDIFORTH’s Recursive Pattern Generator allows the creation of musical analogs of the Koch
snowllake, a classic fractal described by Mandelbrot in The Fractal Geometry of Nature. It works
by recursively layering a short musical motif (up to 64 notes long, but typically only three or four)
specified by the composer in the form ol semitone transpositions from a root.
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(fig. 4 - Recursive Paticrn Generator (von Koch curve) dialog box)

DYNAMIC VALUES IN THE LOGISTIC EQUATION AND MANDELBROT
SET

Choosing a single value for lambda or C is the simplest way of composing with these equations. It
has the disadvantage, however, that for many settings the output is simple or periodic, 1.e. it
consists of some small number of recurring values. In order to maintain the unity provided by
such periodicity but also gain the variety of continual variation it is possible to vary lambda or C
across a small range through the course ol the composition. This generates a more interesting
variety of musical material, the behaviour of which depends on the starting point and range across
which it is varied. Because the variation is continous and in one direction thoughout an entire
work, the changes produced are often of a fundamental or structural nature. For example, the first
movement of Digital Rituals is clearly outlined by the gradually increasing pitch range as lambda
varies from .895 to .92698. This is most evident in the bass line which moves gradually [rom
pitch areas centred on B-flat-2 down to C-2.
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The orbits produced by the equation, the cause of the musical patterning that is the main interest of
the process, can be made, by careful selection of the start and end points, Lo cross several cyclical
and chaotic boundaries through its path. This produces a variety of “textures” that can be exploited
to define the structure of the composition. For example, in HETEROPHONY 48735, allernating
periodic and chaotic regimes produce the algorithmic equivalent of a rondo.
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A similar logic prevails within the Mandelbrot set, with the additional complication that the paths
are two dimensional. The interior of the set has fortunately been well mapped in terms of its orbital
structure (fig. 7). Note the unusual additive relationship, as in a Fibonacci series, between adjacent
cyclical regions in the interior of the set.

{fig. 7 - map of orbital behavior of interior of Mandelbrot sel, from Peilgen)

QUATERNIONS AS MUSICAL GENERATORS
Quaternions are a four dimensional extension of previous work with the logistic equation (one
dimensional, real numbers) and the Mandelbrot set (two dimensional, complex numbers). The

coordinated control of up to four parameters, or of four simultancously occurring musical
elements. For example, pitch, duration, dynamics and timbre are arguably the four most important
musical parameters. A recursive process employing quaternions would allow simultaneous control
of all four. Alternatively, the four dimensional output could be mapped to pitch for the four
instruments of a string quartet or similar ensemble. Such a recursive process is specified by the
equation:

2_},2_ 2

(x,y,w,7) -> (x 794¢, 2Xy+Cj, 2xw+e), 2xz4cy)

Preliminary experiments with this equation have been promising. The principal problem of
exploring a four dimensional parameter space is the lack of any sort of built-in sense of “direction’.
Additionally, the quaternion parameter space has been much less explored and the system itself



much less studied than the logistic equation or the Mandelbrot set, for both of which exist detailed
parameter maps.

ITERATED FUNCTION SYSTEMS AS MUSICAL GENERATORS

A method of computing many of the classic fractals has been developed by Michael Barnsley of
the Georgia Institute of Technology. Known as iterated function systems, this method bears
promise as a general system for computing any desired fractal pattern, as opposed to the ad hoe
system of many different techniques in use at present. One feature of Barnsley’s method is that a
continuous gradation of types is possible. This leads to the concept of fractal interpolation - the
ability to generate fractally consistent data (i.e. of equal [ractal dimension) from a small set of
given data. Thus, a structural outline can be specified by a small number of pitches, the details of
which are filled in by the process in a fractally consistent manner.

NON-RECURSIVE TECHNIQUES

Certain other software tools have arisen out of musical needs in the past year, which do not,
however, pertain (o any specilic recursive technique. Two are:

HARMONIC ACTIVATOR (SCHILLINGER ARPEGGIATION TOOL)

This tool implements the Schillingerian notion of harmonic activation. By specifying a pre-defined
chord series and a rhythmic skeleton, the harmonic structure is “activated”™ through arpeggiation, It
takes as its parameters: a set of chords, an arpeggiation pattern, a rhythmic value, and a total
duration. Continual variation can be added through Schillinger's 'cyclical permutations’. For
example, given a series of 5-voice chords, an arpeggiation pattern (spelled from the lowest voice)
of abcde, and atotal duration of 15 notes, the arpeggiation tool would generate this
accompaniment:

abcde becdea cdeab

The pitch pattern is specified as chord elements, numbered from the lowest voice. An independent
velocity pattern can also be applied.
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( fig. 8 - Harmonic Activator dialog box)

ARBITRARY PATTERN GENERATOR

The arbitrary Pattern Generator is a simple and useful tool. It is used whenever a simple repeating
pattern is required, such as a sequence of repeating melodic shapes, or dynamic accents. These are
often useful starting points for other algorithmic process. The simple nature of the repetition can
be made somewhat more complex by the application of Schillinger’s cyclical permutations, as in
the Harmonic Activator.
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(fig. 9 - Arbitrary Pauern Generator dialog box)

SMART DURATION OPERATOR

When any of the above processes is applied to thythm or duration the results can be less than
satisfactory because of the way a continuous value (e.g. the output of a recursive function) maps
into a discontinuous parameter space (musical durations). For this reason a means of restricting
operations involving rhythmic aspects of music (durations, positions within the measure) to a
musically relevant set of values was developed. Three such sets of values, as defined by
Schillinger, are:



the 2 power series - iz SO {7 S 2 4 8 etc
the 3 power series - w31 3 9 27 etc
the 5 power series - 25 15 1 5 25 125eic

The smart duration operator automatically maps operations applied to durations and rhythms to
members of one of these series, or of some other limited set of rhythmically meaningful values.

THE INTELLIGENT INTERVALTOOL

The Intelligent Interval Tool is a simple method of providing any generator with a limited
contrapuntal/harmonic intelligence. It can modify an existing musical line by reference to a second
line (the cantus firmus) and a table of “allowed” intervals. The ‘allowed' and 'disallowed' pitch
intervals can vary through the composition and are specified on a pitch-class-against-pitch-class
hasis in the form of a table:
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(fig. 10 - Interval Correction Table and Harmonization dialog box)

Modifications of this interval list allow the simulation of styles as varied as organum (only fourths,
fifths and octaves allowed) to dodecophony (fourths, fifths and octaves disallowed). Simple
cxtensions to this tool allow an alternate set of intervals to be specified for metrical context
sensitivity. Thus, there can exist allowed intervals for both ‘strong’ and ‘weak’ beats allowing the
specification of traditional forms of consonance-dissonance relationships such as passing tones
and appogiaturae. Editing functions used with the interval correction table allow the copying of
interval structures (i.e. chords) from one root to another (transposition), and copying pitch classes
from one root to another (inversion),

GRANULATED MUSIC
This tool consists of the application to MIDI data of an audio synthesis technique known as



granular synthesis. The basic procedure is to take a MIDI file consisting possibly of some well
known piece of music, and stretching it out through the repetition of small blocks of musical
material. A “window size” of, say, two bars, is decided upon. The computer then progresses
through the source MIDI file performing the first two bars, then repeats starting, say an eighth note
later, again playing two bars form that point, advances another eighth note and performs two bars
from that point and so on, until the end of the file is reached. With suitable selection of window
size and advancement rate, stretch factors of several thousand times may achieved while still
retaining recognizable musical features in the source material. The idea is a direct application of a
technique used by others, notably Barry Truax, at the audio level to achieve vastly time-stretched
sounds while keeping frequency components within the human audio range.

(fig. 12 - above measures stretched out o 12)
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