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Summary
The vibration of a bowed string has been studied since the 19th century, and today this problem is the only
example of vibration excited by friction which can claim to be well understood. Modern theoretical models
embody many of the complicating features of real strings, instruments and bows, and detailed comparisons with
experimental studies are allowing fine tuning of the models to take place. The models can be used to explore
questions directly relevant to instrument makers and players. The main unresolved question at present concerns
the description of the frictional behaviour of rosin, since recent results have shown that the friction model used
in most earlier studies is incorrect. Better friction models are being developed in current research.

PACS no. 43.75.De

1. Introduction

Modern research on the physics of the bowed string be-
gan with the discovery by Helmholtz, 140 years ago [1],
that a string vibrates in a “V-shape” when bowed in the
normal way. The vertex of the V travels back and forth
along the string as illustrated in Figure 1. Each time this
“Helmholtz corner” passes the bow, it triggers a transition
between sticking and sliding friction: the string sticks to
the bow while the corner travels from bow to finger and
back, and it slips along the bow hairs while the corner trav-
els to the bridge and back. This “Helmholtz motion” is the
goal for the vast majority of musical bow-strokes.

With this in mind, it is possible to distinguish two
types of quality which contribute to the central question
“What makes one violin better than another?” The first
is the “richness” or “beauty” of the sound produced by
the violin, and the second is the “playability” of the vio-
lin, the ease with which an acceptable note may be pro-
duced. The first of these relies, elusively, on the subjec-
tive opinion of the listener. However, the distinctiveness of
Helmholtz motion makes the second, “playability”, more
readily amenable to quantitative study: Helmholtz motion
either is or is not produced by a given bowing gesture, and
if it is, it takes a specific amount of time to become es-
tablished. The reduction of “playability” to these simple
terms means that theoretical models of the bowed string
could be used to explore what makes some instruments
easier to play than others. Such knowledge would help
makers of violins (or indeed of strings, bows, or rosin) to
make more “playable” instruments.
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This paper will review the present state of knowledge
about the mechanics of a bowed violin string, as re-
searchers work towards the goal of a detailed, experimen-
tally validated model which could be used for the kind of
design studies just indicated. (The word “violin” is used
throughout as a shorthand to include all other members
of the family of bowed-string instruments.) The empha-
sis of this paper will be on the current understanding of
the physics of bowed-string instruments, with the aim of
answering questions raised by players or makers of acous-
tic instruments. The modelling developed initially for this
purpose has also been applied to real-time synthesis for
musical performance purposes, and this has led to a sig-
nificant research literature with rather different goals and
priorities: for a recent review of this work see Smith [2].
These developments will not be discussed in any detail
here.

2. The development of theoretical models

2.1. Early work

Helmholtz wrote that “No complete mechanical theory can
yet be given for the motion of strings excited by the violin
bow, because the mode in which the bow affects the mo-
tion of the string is unknown” [1]. Attempting to rectify
this situation, Raman [3] was the first to try to describe
the dynamics of bowed-string vibration. Working long be-
fore the computer age, Raman made several assumptions
in order to obtain a model for the motion of the string suf-
ficiently simple to solve by hand. Raman’s model is based
on a perfectly flexible string, stretched between termina-
tions having reflection coefficients less than unity, excited
by a friction force applied at a single point an integer frac-
tion of the string length away from the bridge. The coef-
ficient of friction was assumed to be a function of relative
sliding speed between bow and string. Using this model
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Figure 1. The Helmholtz motion of a bowed string. The dashed
line shows the envelope of the motion, and the solid lines show
three different snapshots of the string position at different stages
in the cycle. The “Helmholtz corner” circulates as indicated by
the arrows.

Raman was able to find various possible periodic string
motions, including Helmholtz motion.

Some decades later, Friedlander [4] and Keller [5] stud-
ied the same model as Raman but with rigid string termi-
nations, and found the surprising result that all periodic
waveforms are unstable under those conditions. This obvi-
ously conflicts with the experience of playing a real violin.
The source of the instability was later tracked down to the
absence of dissipation in their model: if an ideal Helmholtz
motion is initiated on the string and then a small perturba-
tion is made to it, the perturbation grows with time in the
form of a subharmonic modulation of the Helmholtz mo-
tion [6, 7, 8]. Although traces of these subharmonics can
occasionally be observed in a real bowed string [9], under
normal circumstances the energy losses in the string and
violin body are sufficiently great that stable periodic mo-
tion is indeed possible. The need to allow for losses in a
realistic way led to the next major development in mod-
elling.

2.2. Rounded corners and the digital waveguide
model

In practice, the perfectly sharp-cornered waves which are a
feature of ideal Helmholtz motion, and of Raman’s theory,
are unlikely to occur. The idea of modifying Helmholtz
motion by “smoothing out” the sharp corner was first ex-
plored by Cremer and Lazarus [10]. Cremer then studied
the change in shape undergone by a rounded corner as it
passes underneath the bowing point, and developed an ap-
proximate theory of periodic Helmholtz-like motion which
showed that the “corner” is significantly rounded when the
normal force exerted by the bow on the string is small, but
becomes sharper when the force is increased [11, 12, 13].
A sharper Helmholtz corner implies more high-frequency
content in the sound, so this gave a first indication of how
the player can exercise some control over the sound spec-
trum of the note: ideal Helmholtz motion is completely in-
dependent of the player’s actions, except that its amplitude
is determined by the bow speed and position.

Cremer’s approach was extended to cope with transient
motion of the string by McIntyre et al. [14, 15], to give
what is now usually called the “digital waveguide model”
of bowed-string motion. (Similar models were also devel-
oped for other self-sustained musical instruments, such as
wind instruments [15]. For a recent overview, see [2].) Re-
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Figure 2. Friction force versus string velocity. (a) The relation
assumed by the “friction curve model” (solid line), with a bow
speed vb. The dashed line corresponds to equation (1) as de-
scribed in the text. (b) The results measured in a dynamic experi-
ment (solid line), showing a hysteresis loop which is traversed in
the anticlockwise direction. The dashed line shows the measured
result from a steady-sliding test; the bow speed was 0.042 m/s,
as indicated by the vertical dashed line. The “sticking” portion
of the dynamically-measured curve shows “loops” because the
measuring sensor was not exactly at the bow-string contact point
[25].

taining for the moment the assumption that the “bow” acts
at a single point on the string, two dynamical quantities
enter the digital waveguide model: the velocity v�t� of the
string at the bowed point, and the friction force f�t� acting
at that point. These two quantities can be related to each
other in two different ways, which when combined give a
complete model.

The first relation between f and v is via the constitutive
law governing the friction force. The simplest law, and the
one used in all work on the subject until recently, is to as-
sume a nonlinear functional relationship between f and v,
of the general form shown in Figure 2a. When the string’s
velocity matches that of the bow (vb) the two are sticking,
and the force can take any value on the vertical portion
of the curve, between the limits of static friction. When
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there is relative sliding between string and bow, the fric-
tion force falls with increasing sliding speed.

The second relation comes from the vibration dynam-
ics of the string. A force f�t�, whether it is applied by a
bow or by some other transducer, will excite a particular
motion of the string, leading to a particular response v�t�
at the driven point. For an ideal string which is infinitely
long, the applied force would generate a velocity which
was simply proportional to the force. Waves would be ra-
diated symmetrically outwards in both directions along the
string, and never return. On a finite string, the same outgo-
ing waves are generated, but the velocity response at the
bow will have an additional component due to returning
reflections arriving back from the ends of the string. In to-
tal,

v �
f

�Z
� vh� (1)

where Z �
p
Tm is the wave impedance of the string, T

is the tension, m is the mass per unit length, and vh is the
velocity contribution due to the returning reflections. The
subscript “h” is a reminder that vh is entirely determined
by the past history of the motion.

Equation (1) describes a straight line in the f�v plane,
with slope �Z and intercept vh, as indicated by the dashed
line in Figure 2a. Since v and f must lie on this straight
line, and also on the nonlinear “friction curve”, they must
therefore lie at the intersection point of the two, ringed
in the figure. This graphical view was first described by
Friedlander [4] and Keller [5]. The essence of a time-
stepping simulation is immediately apparent: at a given
time step, vh is computed from the outgoing waves gen-
erated earlier, new values of f and v are computed via the
graphical construction, and new outgoing waves are gen-
erated. The process is repeated at the next time step, and so
on. All that remains to be described is to how to compute
vh.

One way to compute vh would be to use the Green’s
function, or in the language of digital filters an FIR fil-
ter: the time history of force could be convolved with the
impulse response of the string to give the string velocity.
However, the impulse response of a typical string takes
several seconds to decay away (easily confirmed by pluck-
ing the string of an instrument), so this convolution inte-
gral must extend over some hundreds of period-lengths.
A far more efficient method was discovered in the 1970s,
based on treating separately the waves returning from the
two ends of the string. The magnitudes of incoming waves
can be calculated by convolving recent outgoing waves
with a “reflection function” for the relevant portion of
string (i.e. the bridge side or the finger side of the bow).
The reflection functions encapsulate all effects of propa-
gation, reflection and dissipation during one trip from bow
to bridge and back, or from bow to finger and back. They
smooth the waves (i.e. round corners) and delay them by
the appropriate travel time. The required convolution inte-
grals are quite short: whereas the Green’s function method
required convolution with the entire history of the string’s

motion, this method only requires the motion from the last
period or so, since a wave returning to the bow is subse-
quently replaced by the next outgoing wave travelling in
the same direction.

2.3. Early modelling successes

The earliest versions of this digital waveguide model
were developed when the first reasonably cheap mini-
computers became available. A number of successes were
soon chalked up, as various phenomena which had been
previously observed in real bowed strings were repro-
duced, at least qualitatively, by the computer model.
� Helmholtz motion was produced by the model under

some circumstances, and it also gave recognisable ver-
sions of many other periodic regimes of bowed-string
vibration which had been revealed in earlier experi-
mental work [16, 17, 18].

� Detailed string vibration waveforms showed features
seen in experiment, such as “Schelleng’s ripples” [6,
11, 13, 19]. These are disturbances to the Helmholtz
motion generated by the peaks in friction force that oc-
cur during transitions between sticking and slipping.
By reflecting repeatedly between bow and bridge, or
between bow and finger, these disturbances give rise
to a pattern with period �T , where T is the period of
the Helmholtz motion and � is the bow-bridge distance
as a fraction of the string length. (The qualitative ex-
planation of this effect was first developed by Cremer
[11, 13] and Schelleng [19].)

� Broadly plausible initial transients could be simulated
[13, 14].

� An explanation was given for the “flattening effect”,
whereby at high values of the normal force from the
bow, the period of the Helmholtz motion can be sys-
tematically lengthened so that in musical terms the
note “plays flat”. The effect is associated with a fea-
ture of the “Friedlander graphical construction” of Fig-
ure 2a which was ignored in Section 2.2. For a certain
range of vh, the straight line and the friction curve may
meet in three places rather than one. It can be shown
that the resulting ambiguity is resolved by a hystere-
sis rule, as one might have guessed, and this hysteresis
leads to the flattening effect [13, 14, 20]. With higher
normal force, the friction curve is scaled up proportion-
ally so that the ambiguous range of vh becomes wider,
and the effect of hysteresis is correspondingly stronger.

� Successful simulations were shown of a “wolf note”,
a notorious phenomenon particularly common in the
cello. If one tries to play a note whose frequency cor-
responds to a strong resonance of the instrument body,
the resulting string motion may show a cyclical alter-
nation between Helmholtz motion and a different vi-
bration regime in which there are two episodes of slip-
ping per cycle, rather than one. The phenomenon was
qualitatively explained by Raman [3], and it was suc-
cessfully simulated by implementing a bridge reflec-
tion function which included the effect of a body reso-
nance [13, 14].
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� Alongside these uses of the simulation model to inves-
tigate bowed-string physics, the digital waveguide al-
gorithm has also been applied to real-time synthesis for
musical purposes: see for example Smith [2].

3. Ingredients of a complete model

The digital waveguide model can be extended to give a
rather complete representation of realistic bowed strings,
but to do so requires a surprisingly long list of effects to
be taken into account.

3.1. String bending stiffness and damping

The transverse vibration dynamics of an ideal flexible
string are taken into account by the basic version of the
digital waveguide model just described. However, real
strings have some bending stiffness, or resistance to cur-
vature, which in the words of Schelleng [19] “endangers
the beautiful simplicity of the flexible string”. The effects
of bending stiffness become increasingly significant as the
wavelength decreases, i.e. as frequency increases. In terms
of travelling waves, bending stiffness causes wave disper-
sion such that higher frequency waves propagate along the
string faster than lower frequency waves. To allow for this,
a more complicated reflection function is needed [21].

In addition, the reflection functions must capture the
energy dissipation occurring during wave propagation. A
useful first approximation is to attribute “constant-Q” be-
haviour to the vibrating string, so that (leaving aside for
the moment effects due to coupling to the violin body)
all vibration modes of the string have the same damp-
ing factor. A simple reflection function which approxi-
mately achieves this effect was described by Woodhouse
and Loach [22]. In reality, the damping behaviour of mu-
sical strings is more complicated than this [23], with sig-
nificant variation with frequency. Such effects could be in-
corporated into the digital waveguide formalism by using
digital-filter design techniques to match the desired be-
haviour (see e.g. [2, 24]).

3.2. Torsional motion of the string

The friction force from the bow acts tangentially on the
surface of the string, and this will inevitably cause it to
twist as well as deflect laterally. Torsional string motion is
probably not directly responsible for significant sound ra-
diation from the body of the violin. However, the conver-
sion of transverse waves to torsional waves, which are rel-
atively highly damped [22], may account for a significant
part of the energy dissipation during bowing. In turn, this
torsional energy dissipation may help to suppress “Fried-
lander’s instability” [4, 5, 8, 10] mentioned earlier. On the
basis of measurements of the torsional impulse response
of a selection of cello strings, Woodhouse and Loach sug-
gested that constant-Q behaviour was an adequate model
for torsional damping [22].

The digital waveguide simulation model can readily be
extended to include torsion. The friction force at the bow

generates outgoing torsional waves, similar to the outgo-
ing transverse waves. The combined magnitude of incom-
ing waves vh, for use in equation (1), is now given by
the sum of the velocities of the two incoming transverse
waves, already described, plus the corresponding string-
surface linear velocities resulting from the incoming tor-
sional waves from the two ends of the string. Torsional
waves will have their own wave speed and reflection be-
haviour, all of which can be described by suitable reflec-
tion functions in much the same way as was done for the
transverse waves. Equation (1) is then used as before, ex-
cept for a reduction in the value of the impedance Z to take
account of the combination of wave types [15].

3.3. Coupling to the body

Since the aim is to model playability, it is obviously im-
portant to include the effect on the string motion of the
vibration of the violin body. Vibration at the string notch
of the bridge, and to a lesser extent at the fingerboard,
will influence the reflection of transverse waves on the
string. This influence is most naturally described in modal
terms: each vibration mode of the body will contribute
a decaying sinusoidal waveform to the impulse response,
and hence to the relevant reflection function [14]. If treated
directly these increase the lengths of the convolution inte-
grals which must be carried out to compute the reflected
waves. However, it is straightforward to implement this
part of the reflection function using a recursive IIR digi-
tal filter [24, 25], and thus retain computational efficiency.
The modelling of the wolf note, mentioned above, was the
first application of this approach.

In the context of synthesis for musical performance pur-
poses, other signal-processing techniques have been devel-
oped to deal with body coupling, less accurately than the
IIR approach but more efficiently in terms of computation
time. Examples are “commuted synthesis” (e.g. [26]), and
the use of digital-waveguide meshes to model the body vi-
bration directly [27]. Another alternative modelling strat-
egy, related to the latter, is to represent the entire system of
a string coupled to an instrument body by finite-difference
or finite-element methods, see e.g. [28].

3.4. Dynamics and finite width of the bow

The ribbon of hair in a real bow has a finite width, as well
as some degree of compliance. The first fact means that
the bow contacts the string at a range of points rather than
at a single point. The second means that the friction force
will stretch the hair somewhat so that the velocity given
by the player to the bow-stick is not quite the same as the
velocity of the bow-hair at the contact with the string. The
main effect of finite bow width was first pointed out by
Raman [3]: during Helmholtz motion “while it is possible
for a single point on the string to have absolutely the same
velocity as the bow during every part of its forward mo-
tion (i.e. during sticking), kinematical theory shows that
it is not possible for every element on a finite region to
have absolutely the same velocity as the bow in every part
of its forward motion.” The reason is that the portion of
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Figure 3. Helmholtz motion simulated using a model includ-
ing finite bow width and bow-hair compliance, reproduced from
[30]. The top and bottom traces represent the string centre-line
velocity at the outer and inner edges of the bow, respectively.
The adjacent traces show the friction force normalised by the
bow force at the same edges. The central plot is a friction map
showing the distribution of stick and slip across the width of the
bow.

string under the finite-width bow must rotate during stick-
ing (relative to the position assumed in ideal Helmholtz
motion). This rotation generates additional friction forces
at the edges of the bow, which may become high enough
for localised slipping to occur.

McIntyre et al. [6] undertook the first serious explo-
ration of this “kinematical” incompatibility and its effects
on the motion of the string. For simplicity, they studied
the case where the bow contacts the string at two discrete
points, and found that slipping was prone to occur at the
contact nearer the bridge while sticking continued at the
other contact. The resulting irregular vibration of the string
between the bow and the bridge produces a characteris-
tic “fuzzy” sound from the violin, especially when played
with the bow close to the bridge.

A more comprehensive analysis of the effects of a fi-
nite width bow-string contact patch was subsequently pre-

sented by Pitteroff and Woodhouse [29, 30, 31], who in the
same analysis included the influence of bow hair compli-
ance. They developed a numerical approach in which the
portion of string under and near the bow was treated by a
finite difference method, while the waves travelling to and
from the ends of the string (outside the finite difference
region) were still evaluated using the method of reflec-
tion functions. An example of their results is reproduced
in Figure 3. This illustrates various aspects of a simulated
Helmholtz motion. The central panel of the plot shows the
time history of sticking (black pixels) and slipping (white
pixels) across the width of the finite bow. Above and be-
low this are waveforms of string velocity and friction force
at the two edges of the bow. The phenomenon of localised
slipping, anticipated by Raman, is clearly visible.

3.5. The frictional behaviour of rosin

The theoretical concepts described up to this point have
been reasonably well corroborated by experimental re-
sults, with the exception of the assumption that the friction
of rosin (the substance invariably used to coat the hairs
of a violin bow to give favourable frictional behaviour)
is determined entirely by the relative sliding velocity, in
the manner sketched in Figure 2a. Until recently, all pub-
lished work on the bowed string has assumed this “fric-
tion curve model”. Numerical values have been given by
Lazarus [32] and Smith and Woodhouse [25], who mea-
sured the coefficient of friction between two rosined sur-
faces in a steady sliding apparatus. In such an experiment,
friction can only depend upon relative sliding speed. How-
ever, in the context of stick-slip vibration there is no reason
to dismiss the possibility that other state variables might
also influence the tribological behaviour of rosin.

Confirming this suspicion, evidence has been reported
recently to demonstrate that the friction coefficient is in-
deed dependent upon variables other than relative sliding
speed. Smith and Woodhouse [25] measured the friction
and relative sliding speed between a rosined rod and a vi-
brating cantilever system, and found that the path traced
out in the friction-velocity plane shows a hysteresis loop,
no part of which lies close the curve measured in the
steady-sliding experiments. An example is reproduced in
Figure 2b. Later, Woodhouse et al. [33] reported similar
results from an apparatus using a bowed string. The fric-
tion force and velocity at the bowed point were deduced by
inverse computation from measurements of the forces ex-
erted on the two terminations of the string. The conclusion
is that although the linear elements of the bowed-string
simulation model are believed to perform reasonably well,
there is a clear need for a better model for the frictional
behaviour of rosin.

A strong candidate for an additional variable control-
ling the friction of rosin is the temperature in the contact
region [25, 34]. Rosin is close to its glass transition point at
room temperature, so that its mechanical properties change
sensitively with small elevations of temperature. Hystere-
sis in the friction-velocity plane, in qualitative agreement
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with the observations, might perhaps be explained by the
following repeating sequence of events:
a) When slipping starts, heat is generated at a rate equal

to the product of friction force and relative sliding ve-
locity. This heat rapidly raises the local temperature of
the rosin, reducing the shear strength and hence the co-
efficient of friction.

b) After a while, the dynamics of the vibrating string
cause the relative sliding velocity to diminish, and
hence sticking to re-commence. However, the rosin is
still relatively hot from the heat generated during slip-
ping, and so the friction coefficient at the start of stick-
ing is still low.

c) During sticking no heat is generated, and heat is con-
ducted away from the bow-string contact patch. This
allows the rosin to cool down, and the shear strength to
rise.

The heat generated in the bow/string contact region
through friction is counterbalanced by three effects: heat
conduction into the material of the bow and string, ab-
sorption due to the rate of change of temperature at the
contact, and advection as cold rosin enters one side of the
contact region while warmed rosin leaves the other side.
All these effects can be modelled, approximately at least,
quite straightforwardly [25, 34]. The resulting equation for
thermal evolution can be implemented in time-stepping
simulations, by substituting the relevant terms with finite
difference representations. Thus the simulation model of
bowed-string motion can be augmented with a parallel cal-
culation of the contact temperature.

It remains to devise a model for how the friction force at
the bow-string contact might be influenced by the tempera-
ture. Two very simple models have been explored [25]: the
“thermal viscous model” and the “thermal plastic model”.
In the first of these, the rosin is assumed to behave like
a viscous liquid whose viscosity decreases as temperature
increases. In the thermal plastic model, the rosin is treated
as a perfectly plastic solid, which will only deform (i.e. al-
low slipping) once the shear stress reaches the shear yield
strength, which is assumed to be temperature-dependent.
For both models, it is possible to choose values for the var-
ious parameters (contact size, viscosity or yield strength as
a function of temperature, etc.) so as to give results con-
sistent with the measurements in steady sliding tests [25].

Simulations of the bowed-cantilever experiment of
Smith and Woodhouse [25] suggested that, of the two, the
plastic model produces more realistic-looking stick-slip
results than the viscous model. Furthermore, the plastic
thermal model predicts hysteresis in the friction/velocity
plane similar to that seen in the measurements described
above. The conclusion is that the thermal plastic model
offers, at the very least, a promising alternative to the old
friction-curve model. In section 5, recent work will be de-
scribed in which the predictions of old and new models
were compared with detailed measurements from a bowed
cello string to assess whether either model can in fact give
accurate predictions under conditions relevant to musical
performance.

3.6. Gestural input from the player

Before fully realistic simulations can be performed, it is
necessary to know what precisely are these “conditions
relevant to musical performance”. Studies by Askenfelt
[35, 36] have provided some answers to this question. Us-
ing an instrumented bow, information was collected on the
normal force, bow speed, and bow-bridge distance used
by violinists during a variety of different bowing tasks
within the normal playing repertoire. As well as giving
useful numerical values for input to simulation studies,
the results shed light on the complex interactions between
these parameters as players strive to achieve particular mu-
sical effects. Even if the simulation model were perfect
in its representation of the physics of friction and string
vibration, it would probably only yield good musical re-
sults when “played” with imposed bow gestures embody-
ing some of this subtle interplay. A study by Guettler and
Askenfelt [37] on spiccato bowing reinforces this idea:
they were able to achieve a reasonably good simulation
of this “bouncing bow” technique only by including some
subtle details of the phase relation between different com-
ponents of the player’s hand gesture.

A related question about players’ gestural control con-
cerns an idea suggested in the Introduction, that “playabil-
ity” might be somehow quantified in terms of the length of
transient before the Helmholtz motion is established on the
string. Another study by Guettler and Askenfelt [38] gives
data to help define an “acceptably short” transient. Results
of two tests were reported. First, musically-trained listen-
ers were asked to rate the sounds of various bowed tran-
sients produced by a mechanical bowing machine, and the
results correlated with analysis of the transient details of
the notes. In the second task, professional violinists were
asked to play scales and short musical passages, without
being told the purpose of the study, and the transients they
produced were analysed. Both parts of the study showed
that length of “pre-Helmholtz” transient is indeed a mat-
ter of critical importance for good violin sound. Listen-
ers have a narrow and well-defined “acceptance band” for
transient length, around 50 ms. Under a range of different
bowing conditions the professional players almost invari-
ably produced transients within this acceptance range, in-
cluding a significant proportion of “perfect transients” in
which Helmholtz motion was established essentially from
the first cycle. Learning bowing gestures which produce
short transients is obviously a significant goal of the long
hours of practice needed to master the violin.

4. Mapping parameter space: the Guettler
diagram

In order to test whether the simulation model has become
sufficiently accurate to give predictive answers about dif-
ferences of playability, it is necessary to explore its abil-
ity to reproduce details of transients in response to a wide
range of bow gestures. It is not good enough to look at
a single transient: the models contain enough parameters
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that one can often “fine tune” them to get a reasonable
match to any particular transient. What must be done is to
establish suitable families of gestures to study, and to per-
form experiments and simulations using the same families
so that detailed comparisons can be made.

The wide range of bowing gestures used by violinists
occupy a multi-dimensional parameter space. For the pur-
poses of simulation studies, a sub-family of these gestures
must be chosen. In order to plot the results in the form of
pictures which can be readily interpreted, the most conve-
nient choice is a two-parameter family of gestures. Various
choices were tried in early simulation studies [39, 40, 41],
but the example to be used here for illustrative purposes
is more recent. Coming to this subject as a player, Guet-
tler [42] pointed out that the “switch-on” transients upon
which much of the early computer simulation work was
based cannot be achieved in practice: either the bow force
or the bow speed (or both) must start from zero. In a “string
crossing” or a bouncing bow stroke, the initial bow speed
is non-zero but the force increases from zero as the bow
comes into contact with the string. For most other bow-
ing attacks, in which the bow is in contact with the string
before the stroke starts, the force may be initially non-
zero but the bow velocity increases from zero. With this in
mind, Guettler proposed that an interesting two-parameter
family of bow gestures for study are those having constant
bow force, and bow velocity which starts at zero and accel-
erates at a constant rate. Different gestures in this family
can be plotted at different points in the force/acceleration
plane.

Guettler performed computational bowed-string simu-
lations, and plotted the time taken to achieve Helmholtz
motion at a grid of points in this force/acceleration plane.
He also sought analytical expressions for the upper and
lower bounds of the regions of this plane containing “per-
fect transients”, combinations of force and acceleration
which produce Helmholtz motion without any delay what-
soever. Guettler derived four necessary conditions for the
production of a perfect transient, given the same set of sim-
plifying assumptions used earlier by Raman: the effects
of wave dispersion or other sources of “corner rounding”
were ignored, the ends of the string were treated as dash-
pots, torsional motion was ignored, the effect of tempera-
ture on rosin was ignored, the bow was assumed to contact
the string only at a point, the bow hair was assumed to be
rigid, and finally the bowing position was required to be
an integer division of the string length.

To understand Guettler’s four conditions, it is necessary
to follow the sequence of events in the first few period-
lengths of a theoretical “perfect transient”, following a
similar approach to the problem by Cremer [43]. Figure
4 illustrates in schematic form the early stages of a perfect
transient:

a) Before the first slip, the bow pulls the string outwards
quasi-statically.

b) The first time the string slips, two waves (labelled “1”
and “2”) are sent outwards from the bowing point.

Figure 4. Schematic plots of the string displacement during early
stages of a “perfect transient”, as described in the text. A black
dot at the bowed point indicates when sticking is occurring.

c) The first slip ends when wave 2 passes the bowing
point after reflecting from the bridge. Waves 1 and 2
are then both travelling away from the bow towards
the finger.

d) Waves 1 and 2 are both inverted when they reflect at
the finger, and travel back towards the bow.

e) Wave 1 has the wrong sign to induce slipping, and
hence reflects off the (sticking) bow.

f) Wave 2 is however of the same sign as a “Helmholtz
corner”, and induces slipping when it reaches the bow-
ing point. Hence, while wave 1 continues to travel
away from the bow towards the nut, wave 2 travels past
the bowing point towards the bridge.

g) The second slip ends when wave 2 passes back over
the bowing point. Because wave 1 reflected off the
bow whereas wave 2 travelled the extra distance to the
bridge and back, the two waves are now wider apart
than at stage (c).

h) The sequence continues in a similar way, the two
waves getting progressively further apart.

Guettler identified four potential pitfalls in this chain of
events:
A) During stages (c) and (d), the friction force required

from the bow increases steadily until wave 1 meets the
bow, at which point it drops. The first pitfall is hence
that the bow force must be sufficient to supply this peak
level of friction.

B) The second slip should be induced when wave 2 meets
the bow between (e) and (f) above; the second poten-
tial pitfall is therefore that the bow force must be low
enough that wave 2 can overcome static friction and
transmit past the bowing point.

C) Each time wave 2 passes the bowing point the sepa-
ration between the two waves increases by a distance
��L where L is the string length and � is the frac-
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Figure 5. Predicted and simulated regions in the force / acceler-
ation plane where “perfect transients” are possible, reproduced
from [42]. Right-hand column: the lines labelled ‘A’, ‘B’, ‘C’,
‘D’ correspond to the four conditions described in the text. The
white wedge shows the region satisfying all four conditions. Left-
hand column: results of simulations covering the same parameter
space, shaded according to length of pre-Helmholtz transient so
that white pixels correspond to perfect transients. The six rows
show results for different values of bow position �.

tional distance of the bowed point from the bridge. Af-
ter a while wave 1 catches wave 2 from behind, and if
��� is an integer, they exactly coincide after ��� re-
flections. Bearing in mind that the two waves are of
opposite signs, wave 1 tends to cancel wave 2 at this
point, so that the slip may not occur: this is Guettler’s
third pitfall.

D) Finally, Guettler observed that the friction force re-
quired from the bow in order to achieve the perfect
transient reaches a large value after about ���� reflec-
tions of wave 2 from the bridge. This rise in friction
may induce a second slip if it reaches the limiting static
friction, giving the fourth pitfall.

These four conditions for a perfect attack can all be ex-
pressed in simple analytical form, A and D setting min-
imum levels of bow force while B and C set maximum
levels. These predictions were found to agree well with
the results of simulations using the Raman-type model,
as illustrated in Figure 5 (reproduced from [42]): perfect
transients are found in a wedge-shaped region, whose size
and position varies with bow position �. Particularly with

Figure 6. Computer-controlled bowing machine, in this case fit-
ted with a rosin-coated perspex rod to bow a cello.

low frequency strings (such as the C string of a cello or
any string of a double bass), almost any interruption to the
regular stick-slip pattern of the “perfect transient” is likely
to be audible [38]. For such cases perfect attacks must be
the player’s goal for most bow strokes, and Guettler’s con-
ditions provide a guide to what is possible.

The exact formulation of Guettler’s four conditions is
based on restrictive assumptions, and as such their applica-
bility in practice may be open to question. No doubt, some
modifications will occur for more realistic string models:
for example, one would expect damping in the string to
smooth wave 1 more than wave 2, since wave 2 is “sharp-
ened” each time it passes under the bow [12, 13, 14, 15]
whereas wave 1 never passes under the bow, and this will
presumably relax the third condition to some extent [42].
Nevertheless, these conditions represent a significant step
forward in understanding initial transients, when previous
studies had been almost entirely computational in nature
and therefore less illuminating as to the governing param-
eter combinations.

5. Experimental testing

Of course, “Guettler diagrams” like Figure 5 can also
be computed using the more realistic bowed-string mdels
described in earlier sections. However, before such an
exercise can be very convincing, experimental results
are needed. In particular, it would be useful to see an
experimentally-measured Guettler diagram, which would
reveal immediately whether the wedge-like region of per-
fect transients in Figure 5 gives a useful approximation
to real behaviour. Such experiments would also allow de-
tailed comparisons with the predictions of the various
models, to show which, if any, predict the behaviour accu-
rately. Eventually, one would hope that such comparisons
would lead to the development of a fully validated model
with predictive power.

All such experiments require a versatile mechanical
bowing machine, because no human player has sufficient
control or patience to produce the precise and finely-
gradated bowing gestures which make up a Guettler di-
agram. Such a machine has recently been developed by
the authors [44], and is shown in Figure 6. A linear mo-
tor carries a bow, or alternatively a rosin-coated perspex
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Figure 7. Bridge-force waveforms measured using the bowing
machine of Figure 6, using a conventional bow on an open Dom-
inant cello D string (73 Hz). Gestures with constant force and
constant acceleration were used, corresponding to points in the
Guettler diagram of Figure 8a with pixel coordinates (10,10) and
(10,12) respectively.

rod (to match more closely the assumptions of simula-
tion models with a single point of contact). The bow po-
sition is monitored via a digital encoder which allows a
desired trajectory to be tracked by the use of a feedback
controller. Similarly, the contact force between the bow
and string can be tailored to any desired pattern by an-
other feedback controller, using a force signal from an ar-
rangement of strain gauges in the machine’s “wrist”, and
a force actuator to provide compensatory input. The result
is a computer-controlled robot which can produce a wide
range of bowing gestures with good accuracy and repeata-
bility. At present the machine cannot cope with “bouncing
bow” gestures, but for gestures in which the bow main-
tains continuous contact with the string it has capabilities
comparable with, or better than, a human player [44].

The string motion in response to a given bowing gesture
is monitored using a piezo-electric force sensor built into
the bridge of the test instrument, a cello in the tests car-
ried out so far. The force sensor is based on a design by
Reinicke [45], and responds to transverse force exerted by
the vibrating string on the bridge in the plane of bowing.
Ideal Helmholtz motion gives a sawtooth waveform from
such a sensor, because the transverse force slowly ramps
up (or down, depending on the direction of the bow mo-
tion) until the moment when the Helmholtz corner reflects
from the bridge, when the “bridge force” shows a rapid
flyback. Two examples of transients measured in this way,
from constant-acceleration bow gestures at two nearby
points in a Guettler diagram, are shown in Figure 7. The
first shows a perfect attack, in which the sawtooth wave-
form is established immediately, while the second shows
a transient which eventually settles into Helmholtz motion
but with a few period-lengths of irregular motion first.
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Figure 8. Guettler diagrams, showing length of pre-Helmholtz
transient in the force/acceleration plane as described in the text,
for an open Dominant cello D string. Top row: measured using
the bowing machine, (a) with a conventional bow and (b) with
a rosin-coated rod. Bottom row: simulated using (c) the friction-
curve model and (d) the thermal plastic model, both assuming
a single point of contact between bow and string. All four plots
correspond to the same bow position, � = 0.0899: for (a), this is
the position of the centre of the ribbon of bow-hair.

To produce an experimental Guettler diagram the com-
puter is programmed to scan the desired range of force and
acceleration, and to capture the string response to each
bow stroke. The captured waveforms, like those of Fig-
ure 7, are processed automatically by an algorithm which
classifies the motion into Helmholtz motion or one of a
number of alternative possibilities. For cases which pro-
duced Helmholtz motion, the algorithm also determines
the length of the pre-Helmholtz transient. The classifica-
tion algorithm is based on a method originally developed
to process the results of simulation studies [34], and it
allows “honest” comparisons to be made with simulated
Guettler diagrams based on various theoretical models of
bowing.

Some results are shown in Figure 8, reproduced from
[44]. The top row of this figure shows two measured Guet-
tler diagrams, while the bottom row shows two simulated
ones. All four have the same value of �, and the same
ranges of bow force and acceleration. Plot (a) shows a
measurement using a normal bow, while (b) shows the
equivalent measurement using a rosin-coated perspex rod,
to give a close approximation to single-point contact with
the string. Plot (c) shows simulation results using the
friction-curve model based on the best available calibra-
tion data for the particular string and rosin used in the ex-
periment. Plot (d) shows simulated results using the ther-
mal plastic model based on the same physical model.

The two measurements both show a wedge-shaped re-
gion of “good transients”, of the same general form as the
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wedge of “perfect transients” predicted by Guettler’s anal-
ysis and shown in Figure 5. The plots are more “speckly”
than Figure 5, showing variation between similar tran-
sients at neighbouring points. If the measurement is re-
peated, the main features remain the same but the details of
the speckles change: the bowed string is sufficiently sensi-
tive that even a mechanical bowing machine does not elicit
exactly the same transient response from notionally identi-
cal bow gestures. The simulated plots also show speckles,
but in this case repeated running of the same program will
of course produce identical results. The immediate impres-
sion from these plots is that the two measurements give
similar (but not identical) results, and that the thermal sim-
ulation model matches them more closely than does the
friction-curve model. The match is far from perfect, and
this comparison suggests that the thermal model is on the
right lines, but in need of further refinement. That impres-
sion is confirmed by more detailed results reported by Gal-
luzzo [44], and research continues to enhance the model in
the light of a wide range of experimental results.

6. Conclusions and prospects

Studies of the dynamics of a bowed violin string extend
back into the nineteenth century. Models have been devel-
oped, especially over the last few decades, to reach a state
of some sophistication. It is no exaggeration to say that, at
the present time, the motion of a bowed string is the only
stick-slip oscillation which is reasonably well understood.
For other related frictional oscillations, such as squeal in
vehicle brakes, theoretical modelling is much less highly
developed (see for example the review by Akay [46]). This
is not a coincidence. In most engineering problems con-
cerning frictional vibration, and indeed vibration in gen-
eral, the overriding concern is to understand the behaviour
only well enough to design measures which will reduce the
vibration and associated noise nuisance. In musical acous-
tics, things are very different: the essence of music, and in
particular of quality judgements by musicians, lies in fine
details of vibration and sound. Any two violins of reason-
able quality are about as similar to each other, in terms of
measured vibration behaviour, as two nominally identical
car bodies coming off a production line. The remarkable
range of market values of violins depends on relatively
subtle differences of mechanical behaviour.

With this in mind, if a theoretical model of the motion
of a bowed string is to be useful for guiding the design of
more “playable” instruments, it has to be remarkably ac-
curate. The story which has been summarised in this paper
is of the progressive development of a model good enough
to do this job. What has been shown is that present-day
models are approaching this goal, but that when compared
with careful experiments they are not quite up to the task
of predicting, reliably, the transient details of the nonlinear
response to a given bow gesture. Some parts of the models
are probably accurate enough for the purpose, the main
uncertainty lying in the constitutive model for the fric-
tion force. The wide range of experimental data provided

by the recent development of a versatile “bowing robot”
gives clues about how the present models are failing, and
thus about directions to explore to improve them. There
are good grounds for hope that within another decade, a
quantitatively accurate model will be developed.
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