The transient behaviour of models of bowed-string motion
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Theoretical models of the action of a bowed string may be able to shed light on differences of
“playability” between different violins, Subjective judgements seem to be concerned, at least in
part, with the robustness with which one particular oscillation regime of the string (the “‘Helmholtz
motion”’} may be obtained vnder different bowing conditions. In this paper, after a review of
bowed-string modelling, systematic simulation is used to obtain plots of the basin of attraction of the
Helmholtz motion in a particular subspace of the player’s control space. Variations in the size and
structure of this basin of attraction are seen when parameters of the problem are varied, and some
physical interpretation of these variations is given. Some parallels and contrasts are pointed out
between the particular features of the bowed string as a nonlinear system, and the range of more
familiar dynamical systems. © 1995 American Institute of Physics.

L. INTRODUCTION

When a bow is drawn across a violin string, a noise of
some kind is invariably produced. Not all such noises are,
however, acceptable to the violinist—there is a wide reper-
toire of whistles; crunches and screeches which can be pro-
duced if the bow is not controlled in a suitable way. There is
strong anecdotal evidence that some instruments, or some

_particular notes on a given instrument, are more susceptible
than others to such undesirable oscillation regimes. These
instruments or notes require more careful control of the bow,
and are naturally perceived by players as being “difficult to
play.” Theoretical modelling of the action of a bowed string
has reached a sufficient level that one would expect to be
able to shed light on the mechanics of such variations in
“playability.” A framework for such investigation has been
set out in two previous papers,'”? and the aim of the present
paper is to take up in more detail one of the lines of enquiry
initiated there. This concerns the systematic use of numerical
simulation to explore the robustness of the desired oscillation
regime (the “Helmholtz motion”**) under variations in the
detailed form of initial bowing transient.

A violin string is a rather complicated linear system
which is set into self-excited vibration by the action of stick-
slip friction between the bow and the string. It falls within
the broad class of non-linear dynamical systems, and exhibits
many of the phenomena which have become familiar from
the extensive investigation of such systems in recent years.
However, any model of a bowed string which comes close to
realism differs in both style and complexity from the (gener-
ally rather simple) systems more commonly studied. In view
of the complexity of the system, and especially since the
main interest in practice concerns transient, non-autonomous
behaviour, it does not seem possible at present to make sig-
nificant progress other than by numerical simulation. The
parameter space of this problem is very large, and in some
cases the range of variation of the parameters within which
musicaily acceptable results may be obtained is also very
large. It is thus perhaps not surprising that relatively littie
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progress has been made on the problem, even by using simu-
lation studies, although it is now some 15 years since effi-
cient simulation algorithms became available.’ The reason
that some progress is being made now lies in the recent
availability of massively-parallel computing engines. By us-
ing, typically, 8192 processors of a Connection Machine® to
run separate simulations simultaneously, it is possible to
study the behaviour in a two-dimensional patch of parameter
space and see structure in the results which is not readily
discemnible from serial simulations.

To carry this scheme through it is necessary to be able to
classify the outcome of a given transient simulation auto-
matically, since it is clearly not possible to examine the de-
tailed output from each processor manually. The requirement

" is to recognise whether a periodic regime has been achieved,

and if so, which one it is of the wide range of possibilities.
The algorithm developed for this will be described in section
IIIB. Finaily, in section IV some examples are presented to
illustrate the results of simulation experiments using models
with different parameters, These results are discussed in
rather general terms, with the aim of classifying the qualita-
tive types of behaviour observed. The way in which results
are displayed can make a significant difference to how much
information is conveyed. What seems to be needed is a hier-
archy of “pattern recognisers,” which distill increasingly
high-level, compressed information out of the large volume
of individual results. Some suggestions for developments in
this direction will be made.

Some interesting inferences can be drawn from the pai-
ticular results shown here, but the main aim of the present
study is to establish a framework for later studies, both in
terms of methodology and in terms of the natural groupings
of model parameters which reflect different aspects of the
physics of the problem. The rather large number of param-
eters can be divided into those associated with (a) the string;
(b) the instrument body: (c) the stick-slip friction constitutive
taw; and {(d) the player’s control variables when producing a
particular bowing transient. The results to be presented here
explore the behaviour in a subset of the space of player’s
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control variables, category {d). It is hoped that the behaviour

in this space reveals something about the robustness or struc-
tural stability of the Helmholtz motion under differing bow-
ing transients. The question one would then like to address is
“How is this robustness influenced by variations in the pa-
rameters (a) and, more particularly, (b)?" This is the formali-
sation of the question “Why and how does it happen that one
violin, or one string, is perceived as easier to piay than an-
other?” A series of later papers is envisaged, in which vari-
ous specific aspects of that question will be investigated us-
ing the procedures set out here,

il. MODELLING THE BOWED STRING
b

The modeiling of bowed-string motion has been de-
scribed in detail in previous pa;:)ers.1’2'5’-"’9 The methods
adopted have exploited features specific to this problem, and
the models do not relate very directly to the more familiar
styles of model of other nonlinear dynamical systems. A
brief summary will be given here, introducing the various
stages of modelling which incorporate progressively more of
the physics of the real systemn. This relatively lengthy ac-
couni of I'noueumg is 1ﬁ1p0rtam—-uu1 aim is to use soine
insights of dynamical-systems theory to explore a physical
problem, and there is no point in studying models which are
over-idealised to the extent of falsifying vital aspects of the
physical behaviour. On the other hand, of course one wants
the simplest acceptable model. This means that an essential
part of the investigation is to be aware of the range of pos-
sible physical models, and to develop the model under study
iteratively when results show unphysical behaviour. Some
mdividual models may have mathematical interest in them-
selves, but we are not interested here in following up such
suggestions.

All the models to be discussed here share certain ideali-
sations. The most important of these is that the “bow” is
assumed to act at a single point on the string, so that any
effects of the finite width of the ribbon of hdir ot a real bow
are neglected. With this assumption, the essence of the model
is very easy to describe. It is framed in terms of two time-
varying quantities relating to behaviour at the bowed point:
the friction force f(z), and the string’s velocity v(¢) at that
point. The quantities f(r) and v(¢) are connected in two
distinct ways, and when these are enforced simultaneously
the governing equation for the system is obtained.

The first connection between f and v is through a non-
linear relation describing the tribology of stick-slip friction.
We will consider here only models based on the simplest
acceptable idealisation of frictional behaviour, in which the
force and the velocity are related through an instantanecus
functional relation of the kind shown in Fig. 1. (In a more
realistic model, the force would depend not only on the cur-
rent value of the velocity but also on some aspects of the
earlier history of the relative motion between the contacting
surfaces.'®!") The vertical portion of the curve represents the
indeterminacy of friction force when there is sticking be-
tween the two surfaces. This occurs when the string velocity
is equal to the speed v, of the bow. The curved portion of the
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FIG. 1. The heavy curve shows the relation between friction force f and
string velocity v at the contact point, The straight line and ringed intersec-
tion illustrate the approach to solving f(v) simultaneously with Eq. (3). The
other two straight lines demarcate the limits of the ambiguous region for this
solution, as discussed in section IIIC,

f—v relation represents the behaviour when there is relative
sliding between the surfaces, leading to a reduction in the
Il‘lCElOIl IOILU 1[1(: Il'l(zl,lOl’l IU['CG at a gﬂ’en bll(.llllg bpccu lb
assumed to be directly proportional to the normal force f,
between bow and string, the familiar notion of a “coefficient
of friction.”

The values of f; and v, may vary in time: they are two
of the three main “player’s control variables” (the third be-
ing the position of the bowed point along the length of the
string). For the purposes of modelling the string motion, they
will be regarded as given functions of time. Particular time
histories of f, and v, will characterise any particular bowing
transient. For example, a martelé. transient involves a bow
force f, which starts high and falls rapidly to its eventual
steady value, while at the same time the bow speed increases
from near-stationary to a final steady speed. By contrast, a
string-crossing transient involves an already-moving bow
alighting on a string, so that the bow speed will be essen-
tially constant while the bow force increases from zero to a
final steady value. It will be seen later that the theoretical
models agree with the experience of players in that two such
contrasting transients, even if they have the same final values

-of f, and v,, do not necessarily result in the same final
regime of oscillation of the string. Probing such behaviour is
the main objective of this study.

The second connection between f(¢) and v(t) is through
the linear-system dynarmics of the string and violin body. The
velocity response at the bowed point of the string can be
calculated from the past history of the force applied there,
via a convolution integral with the appropriate impulse re-
sponse function, g(¢) say. This impulse response function
can be decomposed into several components.l‘s"’"” It is con-
venient first to separate an initial delta-function contribution,
representing the velocity response of an infinite string to an
applied force impulse: write

Yy -
3(t)=“é— () +g(r) (1)

P
<
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where Y is the characteristic admittance of the string at the
bowed point [equal to (Tm) ™2 for transverse motion of an
ideal string of tension T and mass per unit length m]. The
function g(t) represents the effects of reflections from the
ends of the siring.

Putting the two relations together, the governing equa-
tion for the system is now

o= stu-nf(ar @

where f(v) is the friction function. Using Eq. (1), this may
be written

Yy
: v(t)=~2—_f(r)+uh(t) , (3)
whese
o= gu-nto(nyar @

The quantity v,(¢) depends only on the past history of the
motion, so that in a time-stepping simulation it is a known
quantity at a given time ¢. The way that such a simulation
proceeds is that at a given time step v,(z) is calculated, and
then the new values of f and v are found by solving Eq. (3)
simultanecusly with the friction relation f=F(v). This pro-
cess is most easily visualised as the graphical construction
illustrated in Fig. 1.71213

If we begin with a model which only aillows for trans-
verse motion of the string, £(¢) can be written in terms of
two “reflection functions” representing the combined effects
of propagation, dispersion, dissipation and boundary refiec-
tion on the two separate sections of string to the left and the
right of the bowed point.!” Denoting these two functions
hi(#) and hy(2), we may write

Y
§()= S [h () ho(O) + 2k Syt hy*hyhy

+h2*h1*h2+...] (3)

where * denotes the operation of convolution. This decom-
position considerably improves the efﬁciency of a simula-
tion. The calculation of v,{#) may be done by sioring the
outgoing velocity waves on the string travelling to the left
and to the right from the bow, and performing separate con-
volutions of these with i,(¢) and %,(r) respectively to gen-
erate the reflected waves arriving at the bow from the two
sides.” The sum of these two contributions gives the total
incident velocity at the bowed point, which is v,(¢). The
significance of this approach to the computation is that the
reflection functions may be of quite short duration, whereas

a0 Y tunirally  panfinnas far eama hundrade Af nmarind
Fuiy ypitany CULNIRUCS 1O SUNHIC 1BIRAICUs O Polliol-

Iengths. Thus the time spent calculating convolution integrals
is greatly reduced by using the separate reflection functions.

B. A hierarchy of physical models

To obtain a particular model within the class under dis-
cussion here, it is necessary to specify the friction relation
f{v) and the function g(¢). For a model involving only

. transverse string motion, the latter is best done via the two

reflection functions k,{(¢) and h,(f). A variety of models
may be obtained in this way, depending on just which as-
pects of the physics of real strings and bows are taken into
consideration. Even the simpler of these models have not
yielded very much to analytic treatment. A certain amount
can be learned about the rich set of possible periodic soiu-
tions, both their morphology and the regions of parameter
space within which they are possible and stable,”'*™ but that
is about all. The governing equation for the system takes the
form of neither a set of nonlinear differential equations nor
(except in a very special case, see Appendix A of Ref. 5) an
iterated map, and such progress as has been made makes
explicit use of the particular features of this system, and
seems to have little in common with the main body of
dynamical-systems theory.

‘We obtain what is mathematically the simplest model for
a bowed string by considering a classical text-book string,
rigidly anchored at both ends. In that case, both reflection
functions consist of unit delta functions, delayed by the re-
spective travel times from the bowed point to one end of the
string and back. This model was first discussed in detail by
Friedlander'? and Keller."” Friedlander proved that this
model has a sirikingly unphysical characteristic. The condi-
tion that

dfldv>0 (6)

must be imposed on the friction relation, to guarantee that
the non-oscillatory solution f=constant, v=0 is unstable,
since it is never {or at least almost never'>) observed in prac-
tice. This turns out to be a sufficient condition for all periodic
solutions to be unstable as well, an unsatisfactory state of
affairs. The reason is that Friedlander’s model has no mecha-
nism of energy dissipation, whereas the sliding bow can act
as an energy source when (6) is satisfied. Clearly, any model
which is to be considered as a candidate to describe real
bowed strings must be capable of supporting stable pericdic
solutions, and $0 must have energy dissipation accounted for
in one way or another.

There are two physical mechanisms of dissipation. Most
obviously, there is some loss of energy during the propaga-
tion and refiection of waves from the bowed point to the ends
of the string and back. This can arise from internal dissipa-
tion in the string itself, or from losses into the violin sound-
box (which is after all there in order to draw energy from the

" string vibration and radiate some of it as sound). These ef-

fects can all be allowed for by modifying the reflection func-
tions. The simplest such modification produces ‘“Raman’s
model,”*! which retains the delta-function reflections of
Friedlander’s mode} but allows some energy loss by having a
reflection coefficient jess than 'umty nUWEVEL, Raman’s
model produces results which are still quite unrepresentative
of real string behaviour:>!! in particular, the waveforms for
J(&) and v(#) take the form of piecewise-constant functions,
with sudden jumps between successive constant values.
Instead, we must allow reflection functions of finite
width, so that the waveforms f(¢) and wv(#) tum int
smoother functions. If the reflection functions are given a
width which is finite but still narrow compared with the natu-
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ral oscillation period of the string, they provide energy loss
without significantly upsetting the precise harmonic relation
between the mode frequencies of the string."? A further stage
is to use models which provide for perturbations in these
mode frequencies as well as energy loss: the main effects
contributing to such perturbations are coupling to vibration
modes of the violin body, and wave dispersion due to bend-
ing stiffness in the string itself. Reflection functions which
can account for both these effects have been described
prevmusly

The second mechanism of energy loss is via torsional
motion of the string. So far, only transverse string motion has
been considered. However, the friction force between bow
and string acts tangentially at the string’s surface, so that it
will excite both transverse and torsional motion. The tor-
sional waves are presumably not responsible for significant
sound production, but what little data there is suggests that
they are much more highly damped than the transverse
waves,!” and they play an important role in the overall en-
ergy budget of the system. Torsional enetgy loss may be
allowed for in two ways. The simpler makes the rather gross
assumption that torsional waves are generated at the bow, but

that their reflections from the ends of the string may be ig-
narad ag if the waves were tnfﬂ"v aheorbed there. In that

nored as if the waves were totall absorbed there. In
case, a simple modification to the fncuon—veloclty curve in-
volving a linear shear is all that is necessaxy

However, in reality the torsional waves are reflected. The
model described above can be readily extended to allow for
this, with only a slight increase in complexity. The function
£(#) must now contain contributions from both wave-types
on the string. To achieve this, a second pair of reflection
functions to describe torsional reflection can be introduced,
in exactly the same way as those used to describe transverse
reflection.® (It might also be necessary for complete realism
to introduce “cross-reflection functions,” to allow for trans-
fer between transverse and torsional motion during propaga-
tion and reflection.) The outgoing torsional waves to the left
and right of the bowed point are stored, and incoming tor-
sional waves calculated from them by convolution with these
new refiection functions. Once this step has been taken, then
a wide range of linear-system behaviour of the torsional
waves can be represented by choosing suitable reflection
functions, just as in the case of the transverse waves.

The governing equation is made only slightly more com-
plicated by including torsional waves in this way. The string
surface velocity v(#) is now made up of two compenents:

v(t)=v (1) +ul1) @]

where v,(#) is the transverse velocity at the string centre, and
v,(t) is the transverse velocity at the string’s surface caused
by rotation alone. The total incoming velocity v, () is now a
sum of four terms, calculated by performing the appropriate
convolutions of the outgoing waves with the reflection func-
tions for transverse and torsional waves on each side of the
bow. The friction force f(¢) still obeys Eq. (3), except that
the value of the constant ¥, is now the sum of the transverse
and torsional wave admittances. This force generates outgo-
ing transverse and torsional velocity waves, the amplitude of
each being governed by the corresponding wave admittance.

{This torsional wave admittance is in the same units as the
transverse wave admittance, since it has been defined in
terms of the tangential linear velocity at the string’s surface
in response to a tangential force.) _
It seems likely that a fairly good representation of
bowed-string behaviour might be given by a suitable model
embodying the features described, and the study described
here will be confined to such models. However, one should
be aware that many aspects of the physical system have been
idealised, and relaxing these idealisations might prove nec-
essary at a later stage in the study. Examples might be a more
sophisticated constitutive law for friction, or a better treat-
ment of the contact mechanics near the bow, allowing for the
finite width of bow hair, local bending stiffness of the string,

Loz alondlndinr naodd

bow-hair t:ldbl.lbll,y' ana so o

M. SIMULATION AND REGIME CLA$SIFICATION
A. The delta/Cremer and stiff/Cremer models

We will present results in this paper for two models
which retain reasonable simplicity while representing at least
some aspects of the behaviour of real strings. Both models
share the same reflection function for the short section of
string between bow and violin bridge. (A violin string is
always bowed at a point fairly close to the bridge.} This is
derived from a model due to Cremer,” in which the free
decay times for the first 13 overtones of an open violin A
string (440 Hz) were fitted to the frequency dependence
given by a simple spring/dashpot model for the termination
at the bridge. The reflection function consists of a delta func-
tion followed by a small exponential “tail.””! For one of our

two models, the “delta/Cremer model,” the refiection func-
tion for the other end of the string !thp long section from the

VIRFIR LWL WD VLMWL wedi e wndie Slasiip fRAAw aSal SRAAALN AN 2

bow to the nut or player’s ﬁnger) 18 sunply a unit delta func-
tion, representing perfect reflection on an ideal string. When
these ingredients are combined, the first few period-lengths
of the impulse response function g(¢) for transverse motion
are as plotted in Fig. 2(a). The exponential tails following the
delta functions are only barely visible here, but nevertheless
they introduce the desired level of dissipation.

The second model has a more complicated reflection
function for the long section of string. In order to simulate
the dispersive effects of bending stiffness on the string, a
function js used whose derivation and functional form were
given in Ref. 1, the precise function to be used here being
plotted as Fig. A2 in that reference. Dispersion would be
negligible on the short section of string to the bridge, so it
does not seem necessary to modify the Cremer-model refec-
tion function. When these two functions are combined ac-
cording to Eq. (5), the first few cycles of the transverse im-
pulse response g(t) are as plotted in Fig. 2(b). We will refer
to this as the “stiff/Cremer” model.

The final ingredient of both models concerns the treat-
ment of torsional motion, We use a simple treatment which
comes teasonably close io mirroring real behaviour. Tor-
sional reflections are taken into account by using a model
with identical Gaussian functions for both reflection func-
tions. The width and area of the Gaussians were chosen to
produce reasonable damping factors for the first few tor-

CHAOS, Vol. 5, No. 3, 1985
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FIG. 2. (a) The start of the time history of the impulse response function
2(#) for the delta/Cremer model; (b) the corresponding plot for the stiff/
Cremer model; (c) the corresponding plot for the impnlse response function
for torsional motion as assumed in this study.

sional modes (see the Appendix for details). Of course, it is
necessary to give them different time delays appropriate to
the two lengths of string, and to allow for the fact that the
torsional wave speed is different from the transverse wave

speed. Values for the ratio of torsional-to-transverse wave
speeds and admittances were taken from measurements on a

particular  violin D string (Dominant  aluminium-

460

Frequency/Harmonic number

430

0 10000
Freguency

FIG. 3. Mode frequency over harmonic number for the first 30 overtones of
the string transverse motion, for the delta/Cremer model (triangles) and the
stiff/Cremer model (circles).

on-perlon):? the values are 2.4 and 0.617 respectively. To
represent the appropriate time delays in the discrete form of
the reflection functions needed for numerical implementa-
tion, use was made of a result (proved in section 3 of Ref. 1)
showing that the effective centre of a narrow reflection func-
tion may be calculated by requiring the first moment of the
function to vanish. The first few period-lengths of the result-
ing torsional impulse response function are plotted in Fig.
2(c), on the same time scale as Figs 2(a) and 2(b). The
higher speed of the torsional waves is immediately apparent.
There is assumed to be no interaction between torsional and
transverse motion (except that induced by the friction force
at the bow),

To show what linear-system behaviour is represented by
these models, we may look at the corresponding modal fre-
quencies and damping factors. The frequencies of the first 30
transverse modes of the delta/Cremer and stiff/Cremer mod-

els, with the parameters used in the simulations to be shown
later, are nlnrrpri in Pmr 3. (\Uhaf g nnhm]]u nlnttprl ic the

ratio of the nth mode frequency to the harmomc number #,
in order to reveal clearly any departures from harmonicity.)
The corresponding Q factors are shown in Fig. 4. For the

2000

Q

1000 .

1) 10 20 C30
Harmonilc number

FIG. 4. Q factors for the first 30 overtones of the string transverse motion,
for the delta/Cremer model {circles) and the stiff/Cremer model (triangles).
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FIG. 5. The first 2400 time-samples of the siring-surface velocity for a
transient solution of the delta/Cremer model, The two boxes show sequential
segments: the upper box shows samples 1-1200, the lower box samples
. 1201-2400. 'The horizontal segments of waveform correspond to sticking, at
the bow speed v, . The bow force had the constant value 5.5 throughout,
and v,;,y=0.7 {units and other details are described in the Appendix).

torsional motion, the damping is much higher so that fewer
modes could be measured. The first few frequencies are quite
nnrneata monics of 2 A.YAAn_‘anH Hz, and the first few

Ul Aty hullllvxlivu
Q factors are 25, 43, 45, 45, 40, 37, 33, and 29 (440 Hz being
the assumed fundamental frequency of transverse motion).

The two models show reasonably realistic behaviour.
The delta/Cremer model has modal damping factors for both
trangverse and torsional bebaviour which are of the right or-
der of magnitude, the torsional modes being much more
highly damped. Because this model uses narrow refiection
functions, both the transverse and torsional mode frequencies
form quite accurate harmonic series. The dispersive effect of
bending stiffness in the stiff/Cremer model perturbs the har-
monic series for the transverse modes. The characteristic
sharpening of the higher modes, followmg approximately a
quadratic function of mode number,?' is clear in Fig. 3. The
Q factors for the lower modes are approximately the same
for both models, since the reflection function is intended to
represent dispersion alone, w1thout dissipation. In practice,
as has been explained prevmusly, a filter must be applied to
the reflection function to avoid aliasing problems in the dis-
crete realisation, and the effect of this filter is to produce
additional damping of the higher modes. The Q factors are
still of the right order of magnitude for real strings—if any-
thing, the stiff/Cremer model gives rather more realistic Q
factors for the higher modes. This version of the stiff/Cremer
model seems a good candidate for a benchmark case, since it
includes a good first approximation to the main physical ef-
fects.

B. Classification and automatic recognition of resu

An example of a simulated initial tramsient, using the
delta/Cremer model, is shown in Fig. 5. The siring was at
rest in its undisturbed position at time t=0, and constant
values of f}, and v, were then imposed. The model equation,
in discrete form with approximately 139 time samples per
nominal period length, was then iterated forward in time as
described above. (Further details of this and all other simu-

CHAOS, Vol.
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lations are given in the Appendix.} The particular parameter
vaiues were chosen such that the desired “Helmholtz mo-
tion” oscillation regime was achieved after a relatively short
transient, of some 16 period-lengths. The periodic solution is
just becoming established by the end of the time-window
plotted in Fig. 5, which shows the first 2400 samples of the
string surface velocity waveform v (#). Little apparent struc-
ture can be discerned in the transient, just a rather compli-
cated sequence of intervals of sticking [when v{#)=v;] and
slipping [when v(?)<uv,]. Before further discussion of tran-
sients, we consider the simpler question of classifying the
periodic oscillations which arise in such simulations.
Figure 6(a) shows approximately three cycles of v(z) for
the stable periodic solution which eventually became estab-
lished. Figure 6{b} shows the same three cycles of the veloc-
ity waveform v,(?) of the string’s centre. These two differ
because of the effect of torsional motion. The final waveform
plotted, in Fig. 6(c), is that of the outgoing transverse veloc-

-ity wave from the bow towards the bridge. This will be an

important quantity for determining which of the possible os-
cillation regimes has been achieved, and it is also, to a first
approximation, the quantity responsible for the sound of the
violin. The transverse force exerted by the vibrating string on
the violin l)uugc qu. have this wavelonm. Thxo force in turn
drives the vibration of the structure of the violin body and
thence sound waves in the surrounding air.

Figure 6(a) shows very clearly an alternation of sticking
and slipping once per cycle in the periodic motion. The par-
ticular oscillation regime achieved here is the “Helmholtz
motion,” the only one of the possible regimes which is nor-
mally acceptable to violinists. The motion is characterised by
a single sharp *corner,” or velocity jump, which travels back
and forth between the ends of the string and triggers transi-
tions between sticking and slipping each time it passes the
bow. This is seen most clearly in Fig. 6(c), which we will
refer to as the “bridge-force waveform.” This waveform has
an obvious sawtooth shape, and the sharp “flyback” of the
sawtooth represents the passage of the Helmholtz corner.

In a pioneering study of bowed-string motion, Raman'®

argued that all periodic motions of a bowed string might be -

expected to exhibit travelling “‘comers” of this type. His
argument may be summarised as follows: (i) for any periodic
motion with a period close to the string’s natural period, the
frictional force must be approximately constant, since the
damping is light so that significant force fluctuations would
evoke a very large resonant response; (i) with a friction
function like that of Fig. 1, it follows that the velocity v(2)
must alternate between v, and a single sliding velocity de-
termined by the value of the constant friction force; (iii) from
the D’ Alembert solution for waves on an ideal string, the
individual travelling velocity waves must thus have a (more
or less complicated) *“sawtooth” form, with a ramp of fixed
slope and occasional jumps of fixed magnitude, in other
words “corners.” Raman developed a classification of the
possible periodic oscillation regimes in terms of the number
of corners on the string which they entail. The Helmholtz
motion is in these terms the simplest oscillation, with only
one corner. Other regimes, called by Raman “higher types,”
involve larger numbers of corners. Raman’s scheme pro-
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(a}

(b

(©)

FIG. 6, A portion of the eventual stable periodic solution to the transient
shown in Fig. 5, showing (a) the string surface velocity; (b) the string centre
velocity; and (¢) the outgoing vetocity wave towards the bridge, or “bridge

*
force.

duced good agreement with experimental resulis available in
those days,'5%? and we would expect to be able to use it as a
basis for antomatic classification of the oscillation regimes
arising from simuiations.

When this simulation program is run with a variety of
parameter values, a wide range of behaviour is seen. As well

as the Helmholtz motion, many other periodic regimes can
occur. In the great majority of cases, these belong quite rec-
ognisably within Raman’s scheme. The exceptions of which
we are aware are associated with particular vaiues of the
torsional-to-transverse wave speed ratio, a complication not
considered by Raman, and we will not discuss them in this
paper. However, not all runs of the program yield periodic
regimes. Particularly with high values of bow force f,, per-
sistently aperiodic solutions are found. Such solutions are at
least in qualitative agreement with the experience of playing
the violin—by pressing too hard with the bow, it is only too
easy to produce an unmusical noise of some kind. Whether
such behaviour represents “chaos” in any strict sense is not
known, but it seems likely.

For the purposes of the study reported here, an algorithm
is needed which can recognise an acceptable Helmholtz mo-
tion by processing the output from a given simulation run.
There are three defining characteristics which we can seek to
detect: (1) the motion should be periodic; (2) there should be
Just one episode of slipping per period; and (3) there should
be just one Raman travelling corner involved. Separate tests
are made for these three conditions. Each poses problems in
its detailed implementation, and we address them in tum.

The natural way to test for periodicity is by correlation
analysis. If the correlation coefficient between one period
and the previous one, based on a suitable test waveform such
as bridge force, exceeds a threshold which is close to unity,
then presumably a more-or-less periodic motion has been
achieved. (Of course, the value of the threshold must be fine-
tuned using many simulation runs whose outcome. is in-
spected in detail, so that the criterion for acceptance is in line
with what seems intuitively correct.) This correlation analy-
sis can be implemented without difficulty if the period is
known and is a whole number of samples. However, neither
of those conditions is met in general. With the delta/Cremer
model, with its narrow reflection functions, the nominal pe-
riod is quite easy to predict. There is a frequency-
independent “end correciion,” given by the vanishing of the
first moment of the reflection function.! However, there is no
equivalent simple result for the stifffCremer model. The ef-
fective reflection time is far from obvious [see Fig. 2(b)], and
in any case the inharmonicity induced by the bending stiff-
ness leads one to expect the pitch to vary somewhat depend-
ing on the values of parameters such as bow force, just as
happens with woodwind instruments.”® There is also another
effect which makes pitch hard to predict in advance: it has
been shown that frictional hysteresis (1o be discussed
shortly) causes a systematic Iowenng of pitch as the bow
force is increased.>” 182

These effects all mean that a correIation analysis is re-
quired which can detect “periodic” signals whose period is
not known in advance, and which will not in general be an
integer number of time samples. The approach adopted was
as follows. A nominal period is assigned, then the correlation
coefficient is calculated over a range of one sample above
and below this nominal value using the quadratic interpolat-
ing polynomial on triads of adjacent data points, The maxi-
mum value of this coefficient as a function of the offset from
the nominal period can be found analytically. If a maximum
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occurs within the allowed range, on either side of the nomi-
nal period, then the value of that maximum is taken as “the”
correlation to be compared with the threshold value. The
algorithm can be extended to encorpass a wider range away
from the nominal petiod, simply by repeating the calculation
with the nominal period increased or decreased. The overall
maximum value found within the range searched can then be
taken as the best approximation to the desired answer. As a
side effect, this analysis gives an estimate of the period
length for non-integer periods.

The second test for Helmholtz motion involves counting
the number of episodes of slipping per nominal period
length. This is essentially a trivial operation, since in order to
implement the piecewise-defined friction curve (and the hys-
teresis rule) the program keeps explicit track of whether the
current state is sticking or slipping. However, a little care is
needed if the result of the automatic algorithm is to agree
with a human judgement based on watching the simulation
proceed. It is common to find solutions which are “‘almost
Helmholtz,” but with very brief slips during the nominal
sticking phase. These often appear to be of little dynamical
consequence. The bridge force signal looks very much like
the normal sawtooth, and one suspects that if such a regime
occurred on a real violin, then a listener would judge it an
acceptable Helmholtz motion (although of course there may
well be audible consequences of the extra slips). So the cri-
terion adopted was to count the number of “significant” slips
in a five-period interval, where “‘significant” was defined by
setting a threshold level for the integrated velocity during
one slip interval. The threshold was tuned so that the accep-
tance criterion gave subjectively reasonable results.

The hardest of the three tests to implement robustly was
to count Raman travelling corners. The precise form of the
Helmholtz motion, and the other periodic regimes, varies
with the parameters of the problem, in a way which has been
discussed extensively in previous works. There are two main
effects. First, any reflection functions of finite width cause
the Helmholtz comer to have a finite extent (i.e. to be
“rounded,” so that these models are collectively known as
“rounded-corner models”). The degree of roundedness var-
ies systematically with bow force f;: higher forces produce
a sharper corner, lower forces a more rounded corner.™* The
second departure from the idealised Helmholtz motion is evi-
dent in Fig. 6(c): on the rising ramp of the sawtooth wave,
there is a superimposed oscillation. This arises from velocity
perturbations which are to a large extent trapped in the short
section of string between bow and violin bridge, so that the
period of the oscillation is governed by the distance of the
bow from the bridge. The phenomenon is usually known as
“Schelleng’s ripples.”2® The magnitude of these ripples is
also sensitive to bow force f,: larger forces produce greater
velocity perturbations (when the slightly rounded Helmhoitz
corner interacts with the bow®).

These effects make it rather txicky to implement a robust
algorithm to count the number of Raman travelling corners
in a given solution. The chosen method is based on the slope
of the bridge-force waveform. A simple threshold test on the
slope is certainly not adequate: the Schelleng ripples at high
bow force produce larger values than does the Helmholtz

corner itself at low bow force. However, the effect of ripples
can be reduced by averaging, taking advantage of the known
period of the ripples. A simple moving average of the deriva-
tive of the bridge force waveform, using a top-hat weighting
function with a width equal to the ripple period, produces a
signal which can be tested against a threshold value to detect
Raman travelling corners. As with the other two tests, the
value of the threshold must be fine-tuned to give satisfactory
results. :

When these three tests are combined, and their respec-
tive threshold values carefully adjusted, the discrimination of
Heimholtz motion from other outcomes of a given transient
simulation was found to be sufficiently reliable. The com-
bined test is certainly not perfect, but we will argue in sec-
tion IV that it discriminates the types of behaviour that we
are most concerned about in this study.

C. Transients and divergence of sofutions

The motivation for this entire study is the idea, stem-
ming from the experience of string players and from watch-
ing simulations, that the outcome of a given bowing transient
might depend quite sensitively on the details of the imposed
bow force and bow speed time-histories. Furthermore, it is
thought that the degree of this sensitivity might be influenced
by some aspects of the linear-systemn behaviour of the string
or instrument body, leading to perceived differences in
“playability.” Before showing any systematic computational
results, it is useful to enquire whether such sensitivity might
be anticipated from the geperal description of the models
which we have already given. If a possible source of sensi-
tivity can be identified, that would provide gunidance on
where to search in the multi-dimensional parameter space to
maximise the chance of finding a significant effect.

It is commonplace in dynamical systems theory that such
sensitivity would stem from some mechanism which causes
“neighbouring” solutions to diverge from one another. The
stronger the divergence, the more sensitivity can be antici-
pated. Two mechanisms of divergence can be readily identi-
fied, both associated with the friction function. The first of
these effects stems from the fact that the gradient Jf/dv is
positive on the portion of the curve corresponding to slip-
ping. When carrying out a linearised stability analysis of any
given solution, periodic or not, this positive gradient acts as
a “negative resistance,”'>*?? an energy source which can
amplify a small velocity perturbation. Linearised stability
analysis for periodic solutions to a range of bowed-string
models has been discussed in some detail elsewhere.' In all
cases, the threshold of stability of any particular solution is
determined by a condition of balance between energy loss
(via the reflection functions or into torsional motion) and
energy gain from this negative resistance at the slipping bow.
The possibility of instability, in this linearised sense, obvi-
ously implies the possibility of divergence of nearby solu-
tions, although with realistic parameter values this is usually
a rather slow process.

A much stronger mechanism of divergence of solutions
arises from an aspect of the graphical construction shown in
Fig. 1, whereby the new values of f(#) and v(z) are found
from a knowledge of v,{#). It is plain that if v,(r) falls
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FIG. 7. The waveform of incident velocity v,(t) for the transient shown in
Fig. 5, plotted over the same time range #nd in the same format, The two
dashed lines show the limits of the ambiguous range within which hysteresis
opetates, :

between the two values v and v, (shown on Fig, 1), there is
an ambiguity of intersections of the straight line with the
friction curve. The resolution of this has been shown to be a
hysteresis rule, as one might guess.’ Slipping continues until
v, reaches v,, and when it passes through this value there is
a jump to a state of sticking. Sticking then continues until
vy, reduces as far as v, and there is then a larger jump to a
- state of slipping just outside the ambiguous region. This hys-
teresis kas been shown to be responsible for a fall in pitch of
a bowed note when the bow force is increased >71824

More important for the present purpose, hysteresis can
obviously cause a strong divergence of solutions. Suppose an
occasion arises during a transient when v, rises to approach
v, (during slipping), and then reduces again. The solution
will continue in a state of slipping. But a small perturbation
might cause v, to go just beyond v,. Then there will be a
jump to a state of sticking, from which there is no escape

until v, decreases all the way to v;. By then, the stored

outgoing velocity waves will have been changed sufficiently
that the entire subsequent development of the solution is
likely to be different, A similar drastic effect of a small per-
turbation can, of course, be envisaged whereby v, is carried
just below 14 so that it slips, when v, the unperiurbed case
continued to stick. Again, hysteresis means that there is no
easy recovery from this change, since when v, rises again, it
will not jump back to the sticking state until it reaches v,.
This behaviour can be illustrated with the transient
shown in Fig. 5. Figure 7 shows a plot of v,{¢) for that
transient, with the two critical levels v, and v, indicated. It
is easy to see that the variation of v,(r) is sufficiently strong,
and apparently random, that one or other of the situations
envisaged in the previous paragraph might arise, so that a
solution with slightly different parameters might follow this
one closely for a while, then be diverted away from it. Figure
8 shows an example of this occurring: it shows a simulation
identical to that of Fig. 5 except that the value of f, is re-
duced by approximately 4%. Careful comparison of the two
plots shows that they remain very similar until the time in-
dicated by an arrow, when Fig. 5 shows a slip while Fig. 8
contimies to stick, After that the two transients rapidly di-

am(minim

R

FIG. 8. String-surface velocity in a transient differing from that of Fig. §
only in that the (constant) value of the bow force was 5.3. The two plots
have identical scales and formats. The waveforms diverge strongly at the
time indicated by an arrow.

verge. In fact, this particular pair both lead to a stable Helm-
holtz motion in due course, after transients of different
lengths.

It appears that frictional hysteresis might play a role in
this system somewhat analogous to that of saddle points in
dynamical systems based on differential equations. If quali-
tatively different solutions are separated by a transition of the
kind just described, involving an extra stick/slip transition,
then the boundary separating the basins of attraction of these
two solutions will be marked out by an unstable solution in
which v, (¢} just reaches the critical value but does not cross
through it. This is reminiscent of the solution which marks
the unstable manifold of a saddle point. Such basin bound-
aries will be of particular interest in this study, and if a way
could be found of charting these unstable solutions it might

" offer a more efficient approach than the exhaustive simula-

tion to be used here,

Another question raised by dynamical systems theory is
whether the bowed-string problem has a natural state space,
in which the divergent behaviour could be represented
graphically in'some way. A phase space based on derivatives
is, of course, a nonsense for this system. But one can cer-
tainly define a state-space dimension of some kind as the
minimum number of parameters necessary to specify a given
state of the system completely. At first sight this number is
infinite, since the string is thought of as a continuum, How-
ever, this is rather misleading. Certainly for the Friedlander
and Raman meodels there is a well-defined dimension, equal
to the number of past values of v and f which must be stored
to iterate Eq. {(8) or (I11). (It is necessary to add one more
parameter, to specify whether the current frictional state is
sticking or slipping, to cope with hysteresis.) Rounded-
corner models also have a finite dimension, at least when
they are implemented in discrete form for simulation, Again,
a definite number of past values (of outgoing velocity waves)
is stored by the program to allow the convelutions to be
carried out, and the dimension of the system cannot be
greater than this.

However, even this finite dimension is usually uncom-
fortably large, and no simple graphical presentation of a sub-
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FIG. 9. Friction curves corresponding to o 4=~ 2 {(solid curve); vpe= 0.2
(dashed curve); and © iy=0.9 (dash-dot curve),
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to be useful. The spaces which have been found to show very
interesting structure are subspaces of the player’s control
space, and to this we now turn. As mentioned in the intro-
duction, the many parameters of the bowed-string models
can be divided into four categories. First is a group which
describes the properties of the string: this would include the
tension and mass per unit length, the torsional stiffness, ad-
mittance and wave speed, the bending stiffness, and the in-

i
ternal damping behaviour. The second group concerns the

violin body. In the particular models discussed here, this in-
cludes only the parameters of Cremer’s model (a spring con-
stant and a dashpot rate) and the width and area of the tor-
sional reflection functions. In a more complete model it
would include the natural frequencies, damping factors and
admittances (measured at the string terminations) of the vari-

ous vibration modes of the instrament body. Since these are -

-the mechanical quantities which confain the information
about differences of material and construction between dif-

ferent violins, they will be of prime importance in later
stages of this study.

The third group of parameters specifies the frictional

. constitutive law. In the present model the slipping portion of
the friction curve is represented by a rectangular hyperbola,
so that we need just three parameters: the coefficient of lim-
iting sticking friction, u,, the asymptotic coefficient of fric-
tion at high slip speeds, u,, and one more parameter to
specify the “tightness” of the curve joining these two values.
The particular parameter we use for this, denoted v g4, is the
value of the slip speed at which the coefficient of friction is
mid-way between g, and w,. Friction curves corresponding
to three different values of v ;4 are shown in Fig. 9.

The fourth group of paramelers consists of the player’s
control variables, These specify the time-histories of the bow
speed, the bow force, and the position of the bowed point
along the length of the string. For the present purpose, only
the bow force will be allowed to be time-varying. A family
of exponential bow force transients will be studied, so that an
individual member is completely specified by an initial bow
force fiu, an eventual asymptotic bow force fim, and an
exponential time scale 7 such that the initial offset from

Fasym decays as exp(— ¢/ 75). Results of systematic simulation
will be shown in a plane whose axes are fuym and
finit! Fasym+ The aim is to find the basin of attraction of the
Helmholtz motion in this subspace, and then to see how its
qualitative features change when parameters of the system
are varied. This is, of course, by no means the only possibie
subspace of control space which might be studied, but it will
be seen to be quite illuminating for an initial investigation.

A. The influence of friction-curve shape

We first show a set of results for one particular run, to
illustrate the detailed workings of the automatic classification
algorithm discussed in section IUIB. The architecture of the
Connection Machine makes it convenjent to use 8192 pro-
cessors in parallel. Each processor is given its own set of
parameter values, and they all run independently. In a single

rin. a orid of 128 %64 nmnfc in the chosen parameter plane

run, a grid of 12864 points in the chosen parameter plan
can thus be studied, and all pictures will be shown at this
resolution, A preliminary report on this work? showed a pic-
ture with higher resolution, achieved by splicing together the
results of several runs (and using 16384 processors in paral-
Jel), but we have found that sufficient information can gen-
erally be gained at the lower resolution. The horizontal axis
in each picture shows faym, on a logarithmic scale. The
vertical axis shows fini/fasym» varying on a linear scale in
the range 0-2. Thus points lying on a horizontal line through
the centre of a picture represent “‘switch-on” transients in
which the bow force remains constant throughout (as in the
examples shown in Figs. 5 and 8). Below this line, the bow
force starts low and builds up exponentially 0 fiym, While
above the line it starts high and falls exponentially to
fasym - The exponential time scale is constant thmughout, at
about three period-lengths.

Figure 10 shows four plots obtained after running the
stiff/Cremer model for 40 period lengths, and carrying out
the three tests on the last five periods. The results of the three
separate tests are shown, and then that of the composite
“Helmholtz” check. Figure 10{a) shows the correlation co-
efficient between successive period- lengths, averaged over
the Iast five periods. More-or-less periodic motion is found in
most of the region studied, the exception being at high bow
force as one would expect. To find out the nature of the
(neatly) periodic motions, we must examine the results of the
other two tests. Figures 10(b) and 10{c) show respectively
the number of significant slips in the Jast five period-lengths,
and the number of Raman travelling corners counted in the
same time. Only where these are both equal to five, and
when the correlation coefficient is high enough, do we have
Helmholtz motion, The points which pass this composite test
are shown white in Fig. 10(d) while all others are shown
black.

Thus Figure 10{d) shows a snapshot of which peints in
the chosen portion of parameter space lead to acceptable
Helmholiz motion after 40 periods. However, there is noth-
ing special about the choice of 40 periods—some points may
have reached Helmholtz motion much carlier, while others
which have not yet done so may do so after a longer time,
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Note that some points which appear in Fig. 10(a) as “more-
or-less periodic™ after 40 periods actually correspond to re-
gimes which are slowly evolving, and which may in time
give way to different regimes. We can encapsulate informa-
tion about a range of possible transient lengths by using co-
lour coding in an enhanced version of Fig. 10(d}. The same
set of simulations can be run, and the set of tests for Helm-
holtz motion carried out every five periods. Then a compos-
ite picture can be plotted in which points which never reach
Helmholtz motion are shown black as before, but points
- which do get there at some time are coloured according to
the length of the transient before the first occasion when that
point passes the tests. A set of such pictures is shown in Fig.
11, in which the simulations were run for 100 period-lengths.
In particular Fig. 11{d) shows the same case of the stiff/
* Cremer model as shown in Fig, 10(d). Specifically, the white
region in Fig. 10(d) encompasses all points in Fig. 11(d)
- coloured to indicate a transient of 40 periods or shorter (ex-
cept for certain pixels which were showing acceptable Helm-
holtz motion after 40 period-lengths, but which later “re-
gressed” to something else),

The set of runs whose results are depicted in Fig. 11 was
designed to test the suggestion from the previous section,
that sensitivity of behaviour may relate to the magnitude of
frictional hysteresis. The two columns of the figure show the
delta/Cremer model (on the left) and the stiff/Cremer model
(on the right). The three rows show runs of these models
which differ only in the shape of the friction curve: three
different values of v ;4 have been used, corresponding to the
values used in Fig. 9. The main effect of this variation is to
change the magnitude of hysteresis, from rather small (solid
curve) to quite-large (dash-dot curve). _

It is immediately apparent that v, has a strong effect
on the behaviour of the system, The two models give similar
behaviour, but differ in one very important respect: the stiff/
Cremer model appears to be “easier to play” than the delta/
Cremer model, in the sense that it generally has larger con-
tiguous areas of colour, less interspersed with black. The
pattern of behaviour seen in Fig. 11, and in others not repro-
duced here showing intermediate values of vy, may be
summarised as follows. When v ;4 is close to v, in Figs.
11(a) and 11(b), both models have a rather restricted range
within which Helmholtz motion is found. The allowed region
takes the form of a vertical stripe, suggesting that the behav-
iour is mostly governed by the value of fasym. and that the
precise form of the bowing transient leading to this value
does not influence very strongly whether the eventual out-
come is acceptable Helmholtz motion. There are quite well-
defined limits on f ., , but note that these do not equate to
the values of minimum and maximoum bow force which have
been calculated by Schelleng® and others.®?® Both limits are
set, somehow, by the process of pattern selection in the initial
transient: more than one periodic regime is possible over
most of the range of fyq,, considered here, and of these, the
Helmholtz motion is being chosen only when Jasym lies be-
tween relatively narrow lirnits.

When v,y moves farther away from v, , in Figs. 11{c)
and 11(d), the two models show rather different behaviour. In
the stiff/Cremer model the range of allowed values becomes

wider. There is a sprinkling of black spots within the co-
loured region, but most transients lead to Helmholtz motion
sooner or later. For the delta/Cremer model, the points where
Helmholtz motion may occur are confined within the same
general region, but a great deal of this region is covered by a
pattern of curving black patches. In those regions, periodic
regimes are found which differ from the Helmholtz motion
in having more travelling Raman cormers. We have chris-
tened theSe particular regimes “multiple flyback motion,”
and examples have been shown previously.? They are all
characterised by a bridge-force waveform which looks
roughly like the Helmholtz sawtooth, except that in place of
the single “fiyback™ in each cycle, there is a cluster of 3, 5,
7 or more closely-spaced flybacks. '

It is very encouraging to encounter this regime in the
results of simvlations, since observations of real bowed
strings have indicated that multiple-flyback motion is indeed
a particularly common source of undesirable noise. When a
competent player produces such a noise, unless the musical
context has dictated a very low bow force, multiple-flyback
motion is the most likely cuiprit. The results shown here
indicate that, at least with the present very simplistic model
of the violin body (Cremer’s model), a stiffer string is casier
to play than a perfectly flexible string in the sense of being
less prone to multiple-flyback motion.

This makes some physical sense: the rounding of the
travelling Raman comers necessitated by string stiffness may
well make it more difficult to accommodate a group of
¢losely-spaced corners on the string. However, it is a little
surprising that the trend of better playability (in this particu-
lar sense} with stiffer strings continnes beyond the level of
string stiffness which has been suggested previously as the
maximum accéptable value.?® This fact has been verified
with runs not reproduced here, using stiff-string reflection

-functions representing a range of values of string stiffness.

Perhaps other effects make very stiff strings unacceptabie in
practice, either deterioration of tone quality or influences on
playability from sources not included in this first investiga-
fion, ‘

When v,y moves even farther away from v, in Figs.
11(e) and 11(f), the difference between two models becomes
rather less drastic. At low bow forces, both models now

- show a large area in which Helmholtz motion arises, al-

though often with rather long transients. The stiff/Cremer
model has a fuzzy vertical line at a maximum valve of bow
force, which is at a rather lower value than in Fig, 11{d). The
delta/Cremer model again shows a significant area of black
in the characteristic curving pattern which indicates multiple-
flyback motion.

It is worth noting that the differences in friction curve
between the three rows of Fig. 11 have some immediate
physical significance to a violin player. Of course, the under-
lying constitutive law describing rosin friction cannot be
changed by the player (except perhaps by choosing different
rosin). However, for a given constitutive law, changes in the
bow speed produce a somewhat similar effect. To see this, it
is sufficient to consider the ideal Helmboltz motion. At a
slow bow speed, the whole friction curve will be shifted to
the left. The Helmboliz slipping speed will be low, since it is
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FIG, 10, Plods of {a) the correlation coefficient; (b} the number of significant slips in five periods; (c) the number of travelling cormers in five periods; and (d)
the cases passing the test for Helmholtz motion, for a set of simolation runs for 40 pericd-lengths as described in the text and the Appendix. The horizontal
axis shows asympiotic bow force between (1.5 and 20, on o logarithmic scale. The vertical axis shows initial bow force as a fraction of asymptotic bow force,
on a linear scale from zero (at the bottom) o 2 (a0 the top). The colour scales have the same sequence as 15 shown in the colour bar of Fig. 11,
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FIG. 11. Resnlts of six different sets of simulations, plotted in the same format as Fig, 100 The coloar scale denotes length of ransient before an acceptable
Helmholtz motion was achieved, The lefi-hand column shows the delta/Cremer model, the right-hand column the stiff/Cremer model. The three rows show
¥ g =09 (top), v =02 (middle), and v = =2 {(bottiom)
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approximately proportional to the bow speed. Thus all activ-
ity is confined to a section of the force/velocity characteristic
which is close to the sticking portion——this is a rather similar
effect to changing the friction curve from that of the dashed
curve in Fig. 9 to that of the solid curve. At a higher bow
speed, the opposite argument applies, and the effect is similar
to that of changing the friction curve from the dashed to the
dash-dot curve in Fig. 9. The variations in playability with
changes to v,y may thus manifest themselves as variations
with bow speed.

B. Classification of terrain in control space

The discussion of the results of Fig. 11 has drawn some
conclusions which are specific to the particular models and
parameter values used in those simulations. But there is a
more general issue which can also be illustrated by these
results. The overall objective of this study is to take results
like these for a wide range of models and parameter vaiues,
and compare them in terms of some high-level measures of

“playability.” In view of the large parameter space to be
explored, a further degree of automation of this process is
probably necessary. To move towards defining suitable high-
level measures, it is useful to classify the qualitatively dif-
ferent types of “terrain” found in the results shown here.

We may distinguish five such types. First, there are uni-
form areas of black. Such areas are unambiguous—the
model cannot be *‘played” in a satisfactory way in such a
region. Second, there are coloured areas where the transient
length is smoothly-varying. Such areas occur to the left of
centre in Figs. 11{e) and 11(f). Provided the transient length
is not too long, these are regions where the model is “doc-
ile” for the player: a small change of bowing gesture may
make a small change in transient length, but nothing unex-
pected occurs. As a first guess, this may be the type of terrain
which represents ideal playability.

Next we may identify two rather different types of
“speckled” terrain. In Fig. 11{(b), for example, the coloured
stripe contains only a low density of black spots, but the
colours are certainly not smoothly-varying. Under such con-
ditions a Helmholtz motion is obtained fairly reliably, but
- smail changes in bowing gesture may make a significant dif-
ference to the precise length and nature of the transient. The
transients shown in Figs. 5 and 8 come from such a region of
the controi space, and illustrate the kind of variation of tran-
sient which occurs there. Whether such differences have sig-
nificant audible consequences is not known, but it is a rea-
sonable guess that they do. Such a region might be
experienced by the player as moderately safe, but rather un-
ever, '

The second type of speckly teirain is not well repre-
sented in Fig. 11, but an example of sorts occurs towards the
right-hand side of Fig. 11(d). Here, coloured pixels are inter-
leaved, apparently randomily, with 2 sprinkling of black ones.
The sensitivity of transients to details of the bowing gesture
is such that a small variation may make the difference be-
tween the selection of the Helmholtz motion and that of a
different, undesirable, regime. Such a region must surely be
experienced by the player as unreliable and dangerous. These

Finit/ fasym

fasym

FIG. 12, Contour lines of bow force at time t=Q, on the scales of Figs. 10
and 11,

are the conditions under which unwanted squeaks and
whistles may be produced, because to avoid them requires
extreme, maybe superhuman, bow control.

The final category of terrain can be. described as
*“streaky.” To the left of centre in the top haif of Fig. 1i(c),
coloured pixels are interleaved with black regions. The play-
er’s perception of such a region is probably similar to that of
the previous category, with random black speckles. But in
this case there is obviously some structure in the pattern.
This may make little difference to the player, but it snggests
some significant difference in the underlying physics. Ran-
dom speckles suggest sensitive dependence without offering
much scope for further theoretical study. The pattern of curv-
ing streaks, by contrast, gives a tantalising suggestion of
some order in the behaviour which might be amenable to
explanation.

Not much progress has yet been made in seeking such an
explanation, One thing can be said, though: the pattern of

‘streaks is very reminiscent of the shape of the lines in Fig.

12, which shows contours of bow force at time z=0. (At later
times, as the bow force tends towards f,p, these contours
tend towards vertical lines,) Since the magnitude of hyster-
esis is governed by the bow force, for a given friction curve,
these lines are also contours of the difference v,~— v, at time
t=0. This suggests that perhaps some critical event occurs
early in a starting transient, triggered by the precise hyster-
esis level, and that this eventually determines the choice of
periodic osciilation regime, for example between Helmholtz
and multiple-flyback motion. We have examined many start-

" ing transients in such regions to look for some such critical

event, but so far without success. Continuing effort in this
area is surely justified.

A target for a future stage of the study of playability by
systematic simulation might be to use image-processing
techniques (such as fractal compression) to classify these five
qualitative types of terrain in a given set of output One
could then construct measures of playabiuty from the areas
of the different types. That would give a quick basis for
comparison of a wide range of cases. It would not be neces-
sary for such measures to be perfectly in accordance with the
judgements of players, provided they capture something of
the right flavour of the results. When regions of parameter -
space were found in which these simple measures indicated
strong variation, then one would revert to looking at the
more detailed results to see what was going on.

CHAOS, Vol. 5, No. 3, 1995
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Finally, it is important to address the question of whether
the discussion in this section is based on a solid foundation.
Terrain has been divided into categories and physical signifi-
cance attached to these, without enquiring whether at least
some of the behaviour might not be an artifact of the algo-
rithm for automatic classification of oscillation regimes. To
address this question seriously requires the examination of a
wide range of waveforms, to see whether the automatic rec-

ognition algorithm agrees with human judgement. Unfortu-
natelv it dnes not seam ngth]p to convey very much hv
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reproducing just a few examples here. Instead, we will sim-
ply describe the qualitative conclusion reached after many
studies. When the terrain is smoothly varying, we have in-
variably found that the recognition algorithm works quite
robustly. When the terrain is “speckly’ or “streaky,” things
are not quite so clear. If a line of individual runs through
such terrain is studied {corresponding to a line of pixels in
the plots shown above), there is a complex intermixture of
Helmholtz and non-Helmholtz motion. We then generally
find that most individual pixels are described by the auto-
matic algorithm in accordance with a judgement by eye, but
that occasional ones are not, However, the qualitative nature
of the ferrain is never in doubt: in terms of the five-fold
classification described above, the output of the program has
always been found to be in accordance with human judge-
ment. Since the terrain is more interesting than the individual
points for the study of variations in playability, this degree of
success of the algorithm seems adequate.

V. CONCLUSIONS

It has been shown, by systematic simulation studies, that
a carefully-chosen “benchmark’ model of bowed-string mo-
tion displays many of the qualitative features of the motion
of real strings. A variety of periodic and non-periodic oscil-
lation regimes are found, in good general agreement with
playing experience. Two different bowing transients with the
same final value of such parameters as the normal how force

do not necessarily produce the same regime of oscillation of
the string. In particular, one transient may produce the de-
sired Helmholtz motion while a rather similar transient may
produce a different, undesirable, regime. It has been shown
that at least one parameter of the problem (concerning the
form of the friction function) has a sensitive influence on the
size and shape of the basin of attraction of the Helmholtz
motion, as seen in a subspace of the player’s control space
which is arguably related to subjective judgements of “play-
ability.” The various types of “terrain” found in this control
subspace have been discussed.

The large number of system parameters have been
grouped into a classification scheme which will form the
basis of later studies using the same computer methods de-
scribed in detail here. The most interesting studies will con-
cern the influence of parameters which govern the properties
of the string and the instrument body. The former are the
concern of string manufacturers, and the latter the principal
concern of violin makers. If the widespread notion that one
violin is “easier to play™ than another is really rooted, in part
at least, in the ideas explored here, then there must be some
significant influence from the parameters determined by the

construction and setup of the violin body: in particular, the
frequencies, damping factors, and normalised amplitudes at
the string terminations of the various vibration modes of the
body. If some such link could be established, this would form
a very significant advance for the study of violin acoustics.
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APPENDIX: SIMULATION DETAILS

All the simulations shown in this paper have some pa-
rameters in common, The bowed point divides the string in
the ratio 15:124, and there are 139 time samples per nominal
period of transverse string motion. Frequencies are all quoted
based on an assumed sampling rate of 61.16 kHz, which
makes this nominal fundamental frequency 440 Hz. The time
decay rate of all bow-force transients is 7,=400 time
samples.

The transverse reflection functions have been described

_in the text: details of Cremer’s model are given in section 4

of Ref. 1, the “stiff” reflection function is described and
plotted in the Appendix of the same reference. The torsional
reflection functions are identical Gaussian functions, of the
form exp[(—#/7)*] where 7=1.4 in units of time samples,
normalised such that the sum of the discrete points is
—0.95. The torsional wave speed is 2.4 times the transverse
wave speed, and the ratio of characteristic admittances is
0.617. The time delays for the Gaussian functions on the two
sections of the string are adjusted to match the assumed
speed and bow position by ensuring the vanishing of the first
moment (calculated in discrete form) at the desired time de-
lay.

The slipping portion of the friction curve is modelled as -
a rectangular hyperbola, which is uniquely specified by three
quantities: the limiting coefficient of sliding friction, on the
point of sticking, is 0.8 (when the string surface speed is
equal to the bow speed); the asymptotic coefficient of fric-
tion at high relative sliding speeds is 0.3; and the value of
string speed when the coefficient of friction passes through
the mean of these values, denoted v 4, is glveﬂ a variety of
values which are specified in individual figure captions.
Units are assumed such that the bow speed v, =1 and the

.characteristic admittance for transverse motion Yo=2. In

these units, the Schelleng maxinium bow force®? is approxi-

mately 12, which lies within the limits of Figs. 10 and 11.
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