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Computer modelling of violin playing

R. T. SCHUMACHERT AND J. WOODHOUSEZ}

In the last 15 years there has been significant progress in the understanding of the
oscillations of musical instruments. This progress comes in part from the increased
understanding of the basic physical mechanisms involved in the oscillations, but some of
the major successes arise from a successful adaptation of the physical models to rapid
computer calculation of the waveforms of oscillation. In this article we review research on
the bowed string, where computation speed is now allowing a fruitful exploration of the
enormous parameter space needed to describe the instrument, its strings and the string

player’s control of them in a musical context.

1. Introduction

Many scientists are intrigued by the facts and folklore
surrounding the violin, and this curiosity goes back as
long as there have been scientists. How does it happen
that certain violins can command astronomical prices,
while others, superficially similar, can be bought for
a price which is lower by a factor of 10*? Why does
it seem not to be possible to duplicate the performance of
the famous old instruments, given the advances in
both theoretical and experimental techniques for studying
sound and vibration? Unfortunately, when one makes a
serious effort to apply these techniques, one finds time and
again that one is pushing against the limits of what can yet
be achieved.

The main reason for this is that the violin, in common with
any other successful musical instrument, has evolved to take
best advantage of human abilities; it allows motor actions up
to the limit of what we can achieve to be turned into a range
of sounds which we can process most acutely. This double
optimality makes musical acoustics a more demanding
discipline than other branches of acoustics. One is frequently
confronted with rather subtle physical effects which result in
sounds that our auditory system happens to be able to process
with astonishing acuity. It is never safe to assume that,
because a particular effect is small in terms of physical
measurements, it will therefore not be significant to a skilled
musician.

In barest outline, the chain of events which takes
place when a violin is played is easily described. One
of the strings of the instrument is set into vibration by
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the frictional action of drawing the bow across it, and
the precise form of the vibration is controlled by the
player through the bowing gesture and the actions of
the left-hand fingers in stopping the string to the correct
pitch and providing vibrato. A vibrating string on its
own generates virtually no radiated sound (because its
diameter is very small compared with the wavelength of
sound in air in the relevant frequency range); so an
amplification device is needed. The transverse vibration of
the tensioned string applies an oscillatory force to the point
of the violin bridge where the string makes contact. This force
sets the-bridge, and hence the wooden violin body upon
which it rests, into vibration. The dimensions of the body are
of the same order of magnitude as acoustic wavelengths, and
relatively efficient sound generation is the result. The
particular violin body will impart something of its own
character to the sound at this stage; the resonances of the
structure will produce a particular distribution of enhanced
and suppressed frequencies. The radiated sound waves then
interact with the acoustical behaviour of the auditorium, and
finally reach the ears of the listener. They also reach the
player’s own ears, allowing a feedback process to operate in
which the details of playing are modified if the sound is
unsatisfactory.

The most reliable judgments of violins, when seeking
to pin down physical correlates of ‘quality’, are obtained
not from listeners but from players. By the feedback process
just mentioned, a good player may be able to make
compensations which mask the inadequacies of a poor
instrument to a considerable extent, so that a listener is
hardly aware of them. (A typical anecdote to this
effect appears in the recent memoirs of André Previn
[1], relating to a master class given by Jascha Heifetz;
a student tried to lay the blame for her poor tone on an
inferior instrument, whereupon the master took it from
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her and demonstrated otherwise.) However, the player, being
inside the feedback loop of those compensations, will still be
quite well aware that the instrument is poor, precisely
because it calls for such compensation: it is unlikely that
Heifetz offered to buy the student’s violin. This suggests that
physical correlates be sought for differences of ‘playability’
between instruments. Such differences certainly exist, and
they point to the possibility that the stick—slip oscillations
produced by bowing a string are somehow influenced in their
details by the acoustical behaviour of the wooden box which
is the violin body, to which the string is attached.

These are matters suitable for investigation by the
physicist. Theoretical and experimental study of the bowed
string has a long history, and the physical basis for much of
the observed behaviour is believed to be fairly well
understood. A bowed string is a self-sustained oscillator, in
which a complicated linear system (the string, with attached
violin body, which is in turn weakly coupled to the acoustics
of the auditorium) is driven by the frictional force from the
bow. This frictional force is strongly nonlinear in its
dependence on the string motion under the bow. This
description is generically similar to that of various other
nonlinear systems which have been much studied in recent
years, so that complicated behaviour involving the possibility
of many periodic and non-periodic (‘chaotic’) regimes might
be anticipated. That expectation is in qualitative agreement
with the wide range of unmusical noises that can be elicited
from a violin, especially in the hands of a novice. Computer
studies based on theoretical models of bowed strings are
beginning to provide quantitative information. Although
such studies are in their infancy some interesting results have
been obtained, and the purpose of this article is to review
them.

2. Regimes of bowed-string oscillation

The violinist is almost always trying to achieve a particular
regime of string oscillation, one that was first described by
Helmholtz [2] and is thus known as ‘Helmholtz motion’. It
is a periodic, or (in practice) at least approximately periodic,
regime [3, 4] in which the string sticks to the bow for most
of the time, slipping rapidly backwards relative to the bow
motion just once per vibration period. Many issues of
‘playability’ depend on how the detailed form of the
Helmholtz motion can be modified by the player to produce
variations in tone colour, and on how readily Helmholtz
motion can be initiated and maintained using the various
different bowing techniques which a player wants to be free
to choose for musical reasons.

The idealized form of this Helmholtz motion is illustrated
in figure 1(a). It is approximately a free motion of the string,
in which a rather sharp ‘corner’ shuttles back and forth
around the visible envelope of the string vibration. As the
corner passes the bow, it triggers transitions between sticking

friction and sliding friction, and vice versa. The result is a
velocity waveform at the bow like that shown in figure 1(b),
with one episode of slipping and one of sticking in every
cycle. The role of the bow is to supply sufficient energy
during the sticking phase to compensate for any energy losses
to sound radiation and internal dissipation in the string, bow
or instrument body. The geometry of the Helmholtz motion
dictates that the length of slipping time as a fraction of the
cycle period is equal to the fractional distance of the bowed
point along the length of the string. This is conventionally
designated f; if the string length is L, the bowed point is a
distance SL from the bridge. In normal violin playing, f takes
quite small values, perhaps in the range 0-2-0-02, more
extreme values being used for special effects.

When the string is executing a Helmholtz motion, the
(small) angle between the string and the direction normal to
the bridge changes monotonically throughout the cycle,
except for the moment at which the corner reflects from the
bridge, when this angle jumps. It follows that the waveform
of transverse force applied by the string to the bridge is a
sawtooth, as shown in figure 1(c¢). An interesting conse-
quence is that the driving waveform for the instrument body
is, to a first approximation, independent of almost everything
the player can control: for example the type of string, and the
bow force (i.e. the force with which the bow is pressed against
the string). Only the amplitude of the force waveform varies
with the parameters controlled by the player in steady
bowing; it scales linearly with bow speed and inversely with
f and a player controls loudness primarily by a balance
between these two quantities.

The actual force waveform in practice usually approxi-
mates the sawtooth quite closely. A typical example is shown
in figure 1(d), measured on the open A string of a cello using
a piezoelectric force transducer built into the top of the
bridge. Any variation in tone colour which a player can
produce must arise from the (small) departures of this
waveform from the ideal sawtooth form, and (much more
importantly) from the variety of initial transients which can
be created by different bowing gestures. One instrument will
differ from another in sound because of the different
resonance and radiation characteristics of their soundboxes,
and also they may differ in ‘playability’ because the transient
response of the strings to bowing might be influenced by the
different body responses at the string terminations. This latter
possibility is the long-term goal of the study reported in this
article. Computer simulation can be used to investigate
whether current theoretical models of the bowed string
predict sensitivity of transient behaviour to various parame-
ters of the instrument, string and player’s bowing gesture.
Work so far has focused mainly on the last two of these three
items.

Several periodic regimes besides the Helmholtz motion are
often encountered, both on real strings and in computer
simulations. They are of interest here since they represent



Computer modelling of violin playing 81

ways that a Helmholtz motion might break down or fail to
be established from an initial bowing transient. In a
pioneering study of bowed-string motion, Raman [6] gave an
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ingenious kinematic argument which showed that al/
periodic motions of a bowed string might be expected to
exhibit travelling ‘corners’ of the Helmholtz type. Raman
developed a classification of the possible periodic oscillation
regimes in terms of the number of corners on the string which
they entail. The Helmholtz motion is in these terms the
simplest oscillation, with only one corner. Other regimes,
called by Raman ‘higher types’, involve larger numbers of
corners. Raman’s classification seems to work well for most
regimes encountered in practice, although examples are
sometimes encountered which are not easy to fit into his
scheme and which are the subject of continuing research.
We illustrate the bridge-force waveforms associated with
some important regimes, all recorded on the same cello string
as figure 1(d). First is the ‘double-slip motion’. If the bow
force (controlled directly by the player) is insufficiently high,
it is not possible for the string to stick to the bow throughout
the nominal sticking period of the Helmholtz motion. A
second slip occurs, usually near the middle of the ‘sticking’
period. The bridge-force waveform is then a ‘double
sawtooth wave’, of which an example is shown in figure 2(a).
Sometimes, the second slip grows to equal magnitude with
the first, and the note may then sound an octave higher. More
commonly the slips are of unequal magnitude and/or timing,
so that the fundamental frequency is unchanged. The tone
quality is significantly changed, however, and the result is
usually described by string players as ‘surface sound’. In
terms of Raman’s classification, this is motion of the second
type, since it involves two travelling corners (as is
immediately apparent from the bridge-force waveform).
The next type of motion, shown in figure 2(b), is less well
known. There is a family of such motions, which have been
named ‘multiple flyback motions’. The waveform is still
reminiscent of the Helmholtz sawtooth, except that the single
‘flyback’ of the Helmholtz motion has been replaced by a
cluster of them, with alternating signs. The motion involves

Figure 1. (a) The motion of a bowed string during the
Helmholtz motion: (-—-—— ) envelope of the string vi-
bration; ( ) ‘snapshot’ of a typical string position; and
the arrow indicates the position and motion of the bow. (b)
The waveform of string velocity at the bowed point during
an ideal Helmholtz motion, showing an alternation between
sticking and slipping during each period of the oscillation. (c)
The waveform of transverse force exerted by the string on
the bridge during an ideal Helmholtz motion. (d) Bridge
force waveform measured on the open A string of a cello
executing Helmholtz motion, showing a reasonable approxi-
mation to the sawtooth wave of (¢). The most obvious
difference in the two waveforms takes the form of ‘wiggles’
visible in this waveform, which arise when small perturba-
tions to the motion reflect back and forth between the bridge
and the bow during the sticking portion of the Helmholtz
cycle. The quasiperiodicity of these so-called ‘Schelleng [5]
ripples’ is associated with the position B of the bowed point
on the string.




82 R. T. Schumacher & J. Woodhouse

Bridge force

(@) Time
(b) /V Time
(© rine
(d) —

Figure 2. Bridge force waveforms for various oscillation
regimes of the cello A string used in figure 1(d), with the same
time scale as that figure: (a) double-slip motion, ‘surface
sound’; (b) multiple-fiyback motion; (¢) Helmholtz motion
with ‘spikes’; (d) irregular ‘raucous’ motion, obtained when
the bow force is too high.

more than one slip per period but, instead of being spread
through the whole period as in the ‘surface sound’, they also
appear in a tight cluster. This regime is recognized by players
as leading to an undesirable sound but has not been the
subject of any detailed investigation. The example shown
here is, in Raman’s terms, a ‘fifth type’, since it involves five
travelling corners. The second and fourth of the cluster of five
have opposite signs, meaning that they are travelling around
the string with the opposite sense. Closely related regimes are
encountered with other numbers of ‘flybacks’ in the cluster:
three, seven and higher (odd) numbers are seen in computer
simulations, and cases involving three, five and seven have
been observed in practice.

The other two examples of bridge-force waveforms
shown in figures 2(c¢) and (d) show non-periodic oscillation
regimes. Both arise when the bow force is high. If a
Helmholtz motion is established on a given string and the
bow force is slowly increased, something will eventually go
wrong. At moderate force, one may notice the growth of an
audible noise component accompanying the musical note.
This is the case shown in figure 2(c); superimposed on the
Helmbholtz sawtooth waveform are small, irregularly spaced
‘spikes’. These result from an effect of the finite width of the
ribbon of bow hair: the spikes correspond to times when the
string slips from some of the bow hairs (usually on the side
of the bow nearer to the bridge), while continuing to stick to
the remaining bow hairs [3, 7]. If the bow force is increased
further, all semblance of musical note may be lost, leading
to a raucous ‘crunch’. The passage of the Helmholtz corner
past the bow no longer exerts sufficient force to trigger a
transition from sticking to slipping, so that the accurate
timekeeping of the Helmholtz motion is lost. Usually, an
aperiodic regime results, as shown in figure 2(d). With very
careful control of the bow force a periodic note at a sub-
stantially lower pitch may sometimes be produced instead, a
possibility which has recently excited some interest for its
musical potential[8]. (For musical application see the review
by Edward Rothstein of a concert by Mari Kimura [9].)

3. Theoretical models

To learn something about these regimes of oscillation, and
to begin to attack the questions raised in the introduction, a
theoretical model is needed. We shall dedcribe briefly a
model of bowed-string motion that seems to be the simplest
which captures most of the essential physics, and which is
capable of reproducing many qualitative phenomena that are
observed in real violin strings. Surprisingly, closely related
models can be applied to many wind instruments, but that
issue is notexplored here. The review article in | 10] discusses
the simplest versions of the corresponding clarinet and flute
models.

The model assumes that the bow is applied at a single point
on the string. At this bowed point there are two relevant
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Figure 3. The bold curve shows the relation between the
frictional force f and string velocity v at the contact point.
The straight line and ringed intersection illustrate the
approach to solving f(v) simultaneously with equation (1).
The other two straight lines demarcate the limits of the
ambiguous region for this solution, discussed briefly in
section 4.

variables to consider, the frictional force f{r) between bow
and string and the transverse velocity v(f) of the point on the
string beneath the bow. These two quantities are related in
two quite different ways, and the combination of the two
gives rise to the model equations. First, the force and the
velocity are related by the frictional properties of the rosin
used to promote stick—slip vibration. The simplest model for
this assumes a functional relation between the two variables,
of the kind illustrated by the curve in figure 3. When the
velocity of the string at the bowed point is equal to the speed
vy of the bow, then the two are sticking together and the
frictional force can take any value between the limits set by
the normal bow force Fy multiplied by the coefficient of
sticking friction. This corresponds to the vertical portion of
the curve. When there is relative motion between bow and
string, there will be a sliding frictional force which is
assumed to be a function of relative speed. The rheological
properties of the rosin used to coat the hairs of the bow
produce a variation like that shown in the figure. This simple
model of friction suffices for our present purpose, although
recent work [11,12] has suggested that a more realistic model
should take account of the thermal history of the rosin near
the contact point; there is some evidence that the rosin
actually melts and resolidifies a little during each cycle of
stick—slip oscillation.

The second mechanism relating the force to the velocity
at the bowed point on the string is the linear vibration
behaviour of the string and its attached hardware of
instrument body and player’s finger. If we apply any given
force waveform f(r) to a point on the string, a velocity
response will be evoked. It consists of an immediate response

to the force, together with the combined effect of all reflected
waves arising from earlier forcing which happen to arrive
back at the bowed point at that particular moment. It is
convenient to divide the velocity response explicitly into
these two components. The instantaneous response to force
S(t) is simply the response of an infinite string to the force
(since an infinite string has no returning reflections). This
response is (¥Y/2)f(t), wheére Y is the wave admittance of the
string (given for an ideal string by ¥ = (Tm) ~ "?,-where T is
the string tension and m its mass per unit length). The effect
of returning reflected waves we shall denote vy(z), where the
subscript h suggests ‘history’. Thus

Y
WD) =2 £ + i) 0

It is now easy to see roughly how a time-stepping simulation
of this model can be carried out. At a given time ¢, we can
calculate the value of vy(f) because it depends only on
previous history. We then solve simultaneously for the new
values of v(#) and f(¢), using the friction curve together with
equation (1), which is the equation of a straight line. The
required values are found at the intersection point, as
illustrated in figure 3.

The major computational task at each time step is
thus to calculate v,(¢). The motion of the string immediately
around the bow can be represented, at a reasonable level
of approximation, by a superposition of transverse
waves travelling to the left and to the right at the character-
istic wave speed of the string. When we apply a force
impulse at the bowed point, two identical impulses are
launched, travelling outwards from that point. By con-
sidering the fate of these two impulses separately, we can
obtain a prescription for vi(¢) which is both computationally
efficient and physically illuminating. The first arrival back
at the bowed point is a reflection from the violin bridge,
consisting of an impulse which will have been inverted
on reflection, and slightly ‘smeared’ during its travel.
A little later the first reflection returns from the other
end of the string, after the longer journey to the violinist’s
finger and back. This will also have been smeared out,
in a rather different way since it has had a longer journey on
the string and has reflected from a different kind of
termination.

We may represent these two reflection processes by two
functions, with which the initial impulse must be convolved
to produce the smeared pulses. The ‘reflection function’ for
one half of the string is defined to be the impulse response
atthe ‘bowed’ point in the absence of the bow, when the other
half of the string is replaced by a semi-infinite string from
which no reflections ever return. These reflection functions
will occupy a very much shorter time span than does the
whole decay time of the string, so that computing convolution
integrals with these function can be very fast. However,
these short convolutions are all that we need calculate;
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the subsequent reflections of the initial pulse, as the pulses
travel back and forth past the bowed point, getting ever
broader and slowly decaying away, are generated automati-
cally. The mathematical details of this computationally-
efficient model are given in appendix B of the paper by
Mclntyre et al. [10]. In summary, for each time step we need
to perform two short convolutions with the two reflection
functions, and then to calculate the point of intersection on
the friction curve according to figure 3. That gives two new
values of v(#) and f(r), and we are ready to proceed to the next
time step.

The theoretical model of the string and violin body is thus
encapsulated, as far as the bowing process is concerned, in
the two reflection functions. These can be constructed in
terms of more or less sophisticated physical models; to be
fully realistic they must take into account the dissipation and
dispersion which occurs as waves travel along the sections
of the string, and also the reflection properties of the string
terminations. Dissipation occurs through internal loss in the
string material, dispersion arises from bending stiffness of the
string, the vibration resonances of the instrument body
determine the reflection behaviour at the violin bridge, and
the physical properties of the player’s finger govern the
reflection at the other end of the string [13-15].

There is one further effect which needs to be taken into
account in a realistic model. The frictional force is applied
tangentially to the surface of the string, so that as well as
exciting transverse waves it generates torsional waves. These
also propagate along the string and generate reflections. The
wave speed is generally higher than that for transverse waves
[12, 13]. The combined propagation and reflection properties
of torsional waves can be allowed for in a very similar way
to that of transverse waves, with further reflection functions
[L0]. Although torsional waves in the string are probably not
directly responsible for much of the sound from a violin, they
play a very important role in the energy budget of the bowing
process, and hence in determining the stability of bowed-
string oscillation regimes [3, 13, 16]. Some supporting
evidence for the importance of the torsional parameters of the
string will be shown in the next section.

4. Simulation studies

A certain amount has been found out about bowed-string
behaviour by analytical calculation, especially about which
regimes of self-sustained oscillation are possible and stable
under given conditions [5, 13, 16, 17], but the strongly
nonlinear character of the system makes it hard to make any
progress on questions of starting transients and of which of
the possible regimes is actually chosen from a given bowing
transient. Instead we turn to computer simulation, using the
procedure just outlined. This simulation algorithm has been
used to explore various questions of bowed-string behaviour,
and it has also penetrated the commercial world (under the

label ‘physical modelling’), where musical synthesizers
based on this technique are under development to replace or
augment the FM-synthesis paradigm that has long dominated
synthesizers and computer music [18].

Early implementations of the simulation algorithm took
the form of interactive programs, in which the playing
parameters could be varied during a run so that the program
could be ‘played’, somewhat like the real string. Such
computer experiments yielded many valuable insights into
the bowing process and the strengths and weaknesses of the
particular models used (for example Woodhouse [19]).
However, the parameter space which one is exploring in this
way is so large that it is extremely difficult to discern any
structure in the overall behaviour from watching individual
interactive runs of the program. To address the question of
the robustness of Helmholtz motion to initial transients we
can try to use simulations in a more systematic way, to map
out some part of the player’s parameter space and then to
represent the results in pictorial form so that any interesting
structure makes itself apparent. This strongly suggests that
two-dimensional subspaces be identified for study, since it is
hard to convey results in more than two dimensions.

The many parameters of the bowed-string problem can
be grouped into three categories. The behaviour of the
instrument body influences the string through the motion
of the bridge. The constructional parameters of body and
bridge are the concern of the maker of the instrument and
the bridge, and to some extent may be adjusted by a
violin repair shop. The string’s characteristics are
determined, but never very precisely specified, by the
string maker. Finally we have the parameters of playing;
the player chooses string length with the fingers of the
left hand, and most importantly, controls the nature of
the sound with the bow: its position on the string, its velocity,
and the normal force exerted on the string. (We shall
not here confront the additional problems of bow dynamics,
involving issues such as where on the bow notes are initiated,
and what the differences might be between individual bows.)
We have done simulation studies based on a number of
parameter ‘planes’ chosen from the latter two categories:
string characteristics and bowing gestures. From this still
very large-dimensional parameter space, we shall show
examples of four different two-dimensional subspaces,
chosen to highlight different aspects of behaviour.

To obtain a ‘snapshot’ of behaviour even in two
dimensions, it is necessary to carry out, simultaneously or in
sequence (depending on the computer resources available),
a large number of simulations, each with its own values of
the pair of parameters defining the plane. We display our
results with coloured pictures containing from 3000 to 8192
pixels, one simulation per pixel, in the plane under study. To
implement a systematic simulation scheme with such large
numbers of cases it is necessary to be able to classify
automatically the outcome of a particular transient, and in
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particular to detect whether and when an acceptable
Helmholtz motion becomes established. To do this, we use
a detection criterion based on several simple tests. It is easy
to test the oscillation for periodicity by computing the
autocorrelation function. We also keep track of the number
of stick—slip transitions, and the number of Raman ‘corners’
travelling on the string. The test for a successful Helmholtz
oscillation is that the motion be acceptably periodic, and that
the number of stick-slip transitions and the number of
corners per period be equal to one. From the separate results
for autocorrelation, number of slips and number of comers,
it is also possible to make informed guesses about the nature
of non-Helmholtz oscillations. Details of these tests have
been described elsewhere [15, 20], where it is concluded that,
while the scheme is not perfect, it appears to work well
enough for the required investigation.

At a specified time after the start of the simulation, the set
of tests just described can be applied and, if acceptable
Helmbholtz motion is found, the fact is recorded. The tests are
repeated at set intervals of time, typically every five nominal
periods. The results can then be represented in a plot in which
colours are used to indicate the length of transient before
Helmholtz motion is found, with black indicating pixels
which never achieved Helmholtz motion within the total time
simulated. Otherwise, a ‘rainbow’ palette is used, with red
indicating the shortest transient, and purple the longest. Our
typical runs are 100 nominal periods long, and the shortest
initial transients that we have seen are over within the first
five nominal periods.

For a first example, we choose a parameter plane aimed
at quantifying a player’s feeling that a given note might be
either ‘safe’ or ‘unreliable’. One bowing gesture may
produce a Helmholtz motion quickly, but for an unreliable
note another gesture, slightly different, might produce a
different oscillation regime or have an unacceptably long
transient. A range of somewhat plausible bowing transients
can be constructed by varying just the imposed time history
of the bow force; we allow the bow force to start from a
specified value and to tend asymptotically to a different
value, with an exponential decay of the difference. If the force
starts from zero and increases to the final level, this gives a
simple representation of a string-crossing transient in which
the bow alights on the string and the force takes a finite time
to build up. If the initial force is the same as the final value,
a switch-on transient is produced. This probably does not
represent anything done in normal playing, but it is a
favourite condition for previous simulations and makes a
useful comparison. If the force starts high and decreases to
the final value, then we have at least a crude representation
of amartelé transient (in which a player ‘digs in’ with the bow
initially and then rapidly decreases force while increasing
bow speed). An example of a fairly fast starting transient
obtained from one of the cases, a ‘martelé’, is shown in figure
4. The bridge force for the first few nominal period lengths

is shown. A recognizable Helmholtz sawtooth waveform is
achieved at about nominal period 8.

We may now define a two-dimensional subspace of the
‘bowing gesture’ category by varying the initial force as one
dimension, and the asymptotic value of the force as the other.
The exponential time scale, and all other aspects of the
model, including the bow velocity, are kept constant. An
example of the output is shown in figure 5(«a). The horizontal
axis shows the asymptotic bowing force, on a logarithmic
scale. The vertical axis shows, on a linear scale, initial force
as a multiple of asymptotic force; at the bottom of the figure
the initial force is zero, and at the top of each column of pixels
the initial force is twice the asymptotic force specific to that
column. The force begins as the specified multiple of the
asymptotic force, and decays to the asymptotic force with an
e-fold time of about four nominal periods. The model used
for the rest of the system is the very simple model developed
by Cremer [13], with additional features to allow for string
anharmonicity, and for torsional behaviour of the string. The
model allows, in a way appropriate to a violin string, for the
frequency-dependent energy dissipation of both transverse
[14,20] and torsional [20, 21] waves on the string, but it does
not model the reactive resonant nature of the response of the
violin body. By separating string properties from body
properties, we produce a very-useful benchmark case against
which the changes produced by more sophisticated models
may be judged.

Three types of different non-Helmholiz behaviour (i.e.
black pixels) can be distinguished, and these correspond well,
qualitatively at least, to what happens in real playing. At a
low asymptotic bow force, on the left of the picture, the
Helmholtz motion gives way to other periodic regimes with
more than one slip per period, ‘surface sound’. At very high
bow forces the coloured region has a rather fully vertical
boundary. Beyond this, the asymptotic bow force is high

Bridge force

Time

Figure 4. A typical example of the bridge-force waveform
from a simulated ‘martelé’ bowing transient. A somewhat
irregular Helmholtz sawtooth waveform can be seen in the
final third of the time range plotted, and this soon settles to
an accurately periodic state. The relatively high initial bow
force produces a clearly visible delay before the first slip
occurs.
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Figure 5. (a) Initial bow force against asymptotic bow force. The 128 horizontal pixels represent the asymptotic bow force,
on a logarithmic scale. The bow force varies from 0-5 to 20 in units, used in all simulations, such that Y = 2. The vertical columns,
64 pixels long, represent the initial bow force, initially zero at the bottom, to twice the asymptotic bow force at the top. The
colour scale is such that red signifies that Helmholtz motion has been achieved within 10 nominal periods, and purple that it
has been achieved only between nominal period 90 and 95 of the 100 period run. Black indicates that Helmholtz motion was
not achieved within 100 nominal periods. (b) Time to first slip in the same plane as (a). The rainbow palette indicates relatively
short times on the lower left, increasing to the longest times on the upper right. See text for significance of contours of constant
colour, which are widely spaced towards the lower left, more closely spaced at the upper right.

enough that periodic motion of any kind is not usually
established. In between is a large area of coloured space
liberally spotted with black or long-transient purple, which
sometimes forms a discernible pattern of descending streaks.
Helmholtz motion is established for most ‘bowing gestures’
in this region, except that the black pixels reveal the presence
of a quite different periodic oscillation regime, ‘multiple-fly-
back motion’, which was described earlier. The fact that

multiple-flyback motion is intermingled in the same region
of parameter space as Helmholtz motion is in qualitative
agreement with observations of the occurrence of this regime
in practice.

A clue to the origin of the pattern of descending curves,
which often seem to characterize lines of similar transient
behaviour, is given by figure 5(b). Each simulation in figure
5(a) starts with the string at rest, and the bow hair and string
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Figure 6. (a) Transient length for Helmholtz motion in a plane with axes initial bow velocity against asymptotic bow velocity.
The colour palette has the same scale for transient length as in figure 5 (a). As in figure 5, there are 128 pixels (horizontal)
by 64 pixels (vertical). (b) Time to first slip. As in figure S(b), the contours of constant colour are widely spaced in the blue
(short time to first slip) part of the figure, closer together in the red end.

sticking together. Figure 5(b) shows a similarly colour-coded
plot of the time between simulation initiation and the first slip
of the string relative to the bow hair, obtained from the same
set of simulations that produced figure 5(a). There is
quantitative agreement between the curves of constant time
to first slip in figure 5(b) and the shapes of identifiable curves
of similar transient length in figure 5(a). It appears that
perhaps some critical event occurs very early in the transient,
which strongly influences the eventual outcome and the
transient length. However, it is as yet far from clear just how
such a mechanism might operate, since the initial transients

are in general long and (apparently) irregulaf between the
first slip and the eventual steady oscillation. Even the rather
short transient shown in figure 4 illustrates this irregularity.

A similar clue to the structural features of a bowing gesture
can be seen in figure 6, in which a somewhat different
subspace of gestures is explored. This time we allow
time-varying bow speed, rather than bow force. This is done
in a similar way to the previous case, so that the two
parameters defining the plane are the asymptotic bow
velocity (horizontal linear scale) and the initial bow velocity
(vertical scale). The latter varies exponentially from an initial
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Figure 7. (a). The plane of bowing position against asymptotic bow velocity (98 pixels horizontal by 35 vertical). The bowing
position is given in terms of the fractional distance 3 of the bowing point from the bridge. The reddest pixels mean here that
Helmholtz motion has been achieved within the first five nominal periods. The bow velocity and bowing force are constant for
each pixel, corresponding to the upper row of figure 6(a) and row 21 (counting from the bottom) of figure 5(a). (b) As (a), but
with an initial sinusoidal disturbance on the string (see text for details).

velocity to the asymptotic bow velocity with a time constant
of about three nominal periods. The initial bow velocity
varies linearly from zero (bottom row) to the asymptotic
velocity (top row); that is, in the top row the bow speed is
constant throughout the transient. In all cases the bow force
is held constant. As with figure 5, this family reproduces
some of the features of bowing gestures used in practice.

The results tell a similar story to those in figure 5(a). The
left-hand side of figure 6(a), with a low asymptotic bow
velocity, corresponds qualitatively to the right-hand side of
figure 5(a); in very broad terms, bow force and bow velocity
need to be varied in tandem, so that if the bow velocity is
reduced too far while the force is not, the force will be left
too high for the prevailing velocity and non-periodic motion
is likely to occur. In fact, figure 6(a) would look quite
reminiscent of a portion of figure 5(a) if both axes were
reversed. Figure 6(a) again reveals curves of similar transient
length that, particularly for the shortest transients, prove to
be identical in shape with lines of constant time to first slip,
as shown in figure 6(b).

One bowing parameter at a violinist’s disposal is
the distance between bow and bridge, which is usually
expressed in terms of the fractional distance f of the
bow from the bridge. The proper management of
this distance, in conjunction with bow velocity and
bow force, is central to the violinist’s bowing tech-
nique. In one of the earliest and most influential
papers on player—instrument interaction, Schelleng [5]
used a simple model of the string and its interaction with
the body of the instrument to derive relations between
bow force, position and speed that served as boundaries
in that three-dimensional space for the existence of
Helmholtz motion. Some of our most recent explorations
of the space of bowing gesture have explored this
‘Schelleng space’.

As an example, figure 7(a) shows the bowing distance f,
varying linearly on the vertical axis, against bow velocity,
on the horizontal axis. Helmholtz motion is found within
a roughly triangular region. The region below the
curved lower boundary of the coloured region corresponds
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to a violation of the minimum bow force requirement, below
which multiple slips occur, as in the left part of figure
5(a). The black region on the left-hand side of the
figure corresponds to exceeding the maximum bow force
for all the velocities in that region, and the waveforms
becomes non-periodic. The shapes of these boundaries may
be compared with Schelleng’s formulae; he predicts that, at
the ‘minimum force’ condition, v, %, which gives a
qualitatively similar shape of boundary to that seen here
while, at the ‘maximum force’ condition he predicts that
vy & 3, which is not a very convincing description of what we
see here. Schelleng’s predictions for maximum bow force
have been compared with experimental results and with
simulations in a recent study [12], and his predictions for
minimum bow force have been discussed in some detail in
another study [15]. Improving on the understanding which
underlies Schelleng’s formulae is one of the targets of
simulation studies such as those just shown.

The final boundary of the coloured region in figure 7(a)
reveals a different phenomenon. The black region in the
upper part of the figure shows a failure to establish Helmholtz
motion when f is too large. This is in qualitative agreement
with the experience of players; non-Helmholtz sounds are
deliberately employed for certain colouristic effects by
playing sul tasto, in other words with the bow rather far from
the bridge, over the violin’s fingerboard. In this region
various of Raman’s ‘higher types’ occur more readily than
the Helmholtz motion. These simulation results give the first
theoretically based characterization of the boundary of this
region.

Figure 7(a) shares one feature in common with figures 5(a)
and 6(a) that has not so far been commented upon. The
coloured regions, presumably in some sense ‘safe’ for the
player, are in fact mottled in their appearance; frequently,
nearest-neighbour pixels have quite different transient
lengths. Some of this variegation may be attributed to the
vagaries of automatic recognition of an acceptable Helmholtz
regime, but the qualitative phenomenon is undoubtedly real.
[t probably indicates a kind of sensitive dependence familiar
from chaotic nonlinear systems (the ‘butterfly’s wingbeat
effect’).

A plausible mechanism for such behaviour has been
advanced [20], based on the detailed behaviour of the
construction shown in figure 3 for finding the appropriate
values of v(#) and (1) from the friction curve and the value
of vp. It is clear for the friction curve plotted in figure 3 that,
for a certain range of vy, the straight line and the friction curve
have three intersections rather than a single intersection. A
hysteresis cycle then results [10, 22], involving rapid ‘jumps’
when v, passes through and out of the ambiguous region (in
either direction). Now suppose that, at some point in a
particular transient, v, comes close to one of these ‘jump’
points and then turns back. A very slightly different transient,
in contrast, might go through the ‘jump’ value. Thereafter the

two solutions will have quite different character (one will
have sticking at the contact, and the other slipping) and the
subsequent evolution of the two need not come back together
again.

String players are very sensitive to the problems of
achieving reliable short transients, and are more so the lower
the pitch of the instrument. One of the distinguishing features
of an expert player is the ability to play cleanly even very
rapid passages with multiple bow changes. A standard trick,
used particularly by cellists, is to ensure that there is a
disturbance present on the string before the bow transient is
executed. One often catches cellists ‘in the act’, discreetly
plucking a note with the left hand just before initiating the
bowing gesture. It is an interesting test of the simulations to
see whether such a disturbance, already present on the string,
can change the appearance of pictures such as figure 7(a).
Figure 7(b) shows the results of a run with the same
parameters as figure 7(a), but with the addition of a sine wave
of period equal to the nominal period of the bowed note in
the initial conditions for each simulated run. The amplitude
of the sine wave is constant over figure 7(»); amplitude is 5
in the units, used in all simulations, such that Y= 2, where
Y is the wave admittance of the string as before. For scale
comparison, an estimate of the magnitude of the Helmholtz
jump in string velocity varies from about unity in the lower
left to 40 in the upper right of figure 7. One sees in figure
7(b) that there are much larger contiguous regions of equal
or neighbouring colour (in the rainbow sense), and that the
region of shortest transient, confined to a single pixel in
figure 7(a), has expanded to several dozen pixels. Examin-
ation of the waveforms in these very short transients (not
reproduced here) shows that from the very beginning the
disturbance predisposes the system to slip regularly every
nominal period, so that a Helmholtz pattern is very quickly
established. Also, the ‘Helmholtz’ region is now larger,
mainly through a shift in the lower boundary; ‘surface sound’
occurs significantly less readily with the sinusoidal initial
disturbance on the string.

We now turn to our final subspace of bowing parameters,
one under the control of the string manufacturer. Strings
are sold with all manner of core materials, around
which wrappings, typically of aluminium or silver, may be
coiled. Some strings are homogeneous; violin E strings
are usually of steel, although are occasionally aluminium
wrapped, and lower strings, particularly A and D, are
available as homogeneous sheep gut without wrapping.
By the choice of materials and constructional method,
the manufacturer controls the linear mass density, the
radial distribution of mass density, and the string’s bending
stiffness. These quantities may potentially influence
the playing behaviour of the string, and we now examine
one aspect of this influence, governed by the string’s
torsional dynamics.

We can specify two important dimensionless quantities
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relating to torsion: the ratio (Zaio) of the wave impedance for
a torsional wave to that of a transverse wave, and the ratio
(Sraio) Of torsional wave speed to the transverse wave speed.
It is implicit in the work of Schelleng [5], and in the extended
discussion of torsional motion by Cremer [13], that these
ratios are related by the radius of gyration &:

k 2
atio = | — | Statios
& (a> ‘ @)

where a is the string radius. The quantity (k/a)® is the second
moment of the radial mass distribution, which is governed in
manufacturing by the nature of the core material, the
wrapping material or materials, and the wrapping technique.
(The manufacture’s choice of these materials and techniques
is also influenced by the fact that the final product must not
be too stiff against bending, or the string will be hard to bow
because the higher overtones of transverse vibration depart
too strongly from a harmonic series [5].)

Figure 8(a) shows the result of simulations in which only
the torsional parameters Zuio and Spo are varied. Spaio 1S
plotted linearly on the vertical axis, and Z:ai, on the horizontal
axis. The two boundaries which are apparent as black space
with sharp straight boundaries with the coloured pixels are
determined, in the lower right, by the physical requirement
that k/a = 1 and, for the upper boundary, by (k/a)* < 0.3. The
former requirement arises from the fact that mass cannot
appear outside the physical radius, and the lower boundary
represents a guess that manufacturers will not make strings
with core density drastically exceeding wrapping density.
Calculations were not done outside these boundaries.

We see the familiar mottled appearance of the colours,
interspersed with black pixels indicating that Helmholtz
motion was still not detected after 100 periods. It is
immediately clear that these two torsional parameters exert
a significant influence on the playing behaviour of the string.
In so far as the figure shows a slight indication of horizontal
striation, it appears that the torsional wave speed plays a
larger role than the torsional impedance. This might arise
because the precise timing of torsional reflections relative to
transverse reflections can influence stick—slip transitions,
perhaps in a rather sensitive way.

To explore the implications of string manufacture more
thoroughly, extensive tests were made over a wide range of
bowing forces. The result of another run, at four times the
force of figure 8(a), is shown in figure 8(b). Here all
simulations that achieved Helmholtz motion in 100 periods
are coloured red; the rest are coloured white, except for a
limited set which are coloured black. Those pixels mark the
positions in this plane of a set of strings on which detailed
measurements of string parameters and maximum bow force
were made by one of the authors [12]. Their positions on this
illustration give some practical meaning to the scales chosen.
There are four strings that are homogeneous: two steel E
strings and two gut D strings. They lie on a straight line

terminating at the upper right. The other black pixel near the
top is for a steel-core E string wrapped with aluminium. The
four homogeneous strings have (k/a)®>=1/2, as required
by a calculation in elementary mechanics. The other six
strings turn out to lie on a straight line with slope
(kla)> =0.73 = 0.05. They are all D strings, produced by
three manufacturers, with one silver and one aluminium
wrapping each. The cores included both gut and Perlon. One
might speculate that the makers were striving for, and
independently achieved, a certain excellence in string quality
that ended them all at the same radial mass distribution, but
it is apparent from the figure that these strings will behave
differently under the bow because of their different torsional
properties. )

The horizontal gaps in figure 8(b) show that certain values
of Srauo do not readily support Helmholtz motion at the normal
frequency, at least with this rather large bow force and
particular value of bowing position. This suggests effects of
the timing of torsional reflections, hinted at above. These are
the subject of a continuing investigation.

5. Conclusions

The bowed-string instruments are a rather extreme case of the
wide family of sustained-tone acoustic instruments. For any
of these, it is becoming possible to perform computer
simulations that show effects of sufficient subtlety to be of
interest to a skilled player. This inevitably requires the
specification of a large number of parameters to describe the
physical instrument, and also of parameters to describe the
(time-varying) control exercised by the player. The challenge
is to find a way through these complexities so that such
simulations can shed light on the abiding mysteries of what
makes for excellence in the construction of an instrument, or
in the performance upon it. The studies described here show
that such issues can now be tackled for the bowed-string
instruments, and one may hope for significant progress in the
coming few years.

The commercial uses of the basic ideas, as described in
[18], have already achieved a musical usefulness. However,
the problems faced in producing musically useful sounds in
real time, controlled by a keyboard, are largely of an
algorithmic nature in computer science, and of a hardware
nature in electronic engineering. Ultimately, to achieve
real-time performer control of such instruments will require
an interface capable of the degree of control that the acoustic
instruments, with several centuries of development in the
case of the bowed strings, have already made available to the
most highly skilled musicians. It will be interesting to watch
the development of that interface and to compare it with the
existing instruments.

However, the main interest in pursuing physical modelling
of bowed strings by computer is not to fuel the commercial
music industry. Our motives combine natural scientific
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Figure 8. (a) Vertical axis (100 pixels): ratio S,,;, of the speed of torsional waves to transverse waves. Horizontal axis (50 pixels):
ratio Z.,;, of torsional wave impedance to transverse wave impedance . The pixel colour values are as in figure 6(a). The black
pixels below and to the right of the coloured region, and above and to the left of the coloured region, demarcated by straight
lines, are for values of the ratios for which no simulations were made (see text). Black pixels within the body of the coloured
region indicate that Helmholtz motion was not achieved in 100 nominal periods. The bow force in this figure was 10, and bow
velocity 1 in the reduced simulation units. (b) Axes as (a), with bow force 40 in reduced simulation units. The red pixels now
simply indicate those simulations that achieved Helmholtz motion within 100 periods. The black pixels indicate the parameter
values of several real strings, as reported in reference [12]. The straight line connecting the black pixels that terminates in the
pair of pixels at the upper right (E strings) represents Z i, = (1/2) S;a1i0, the appropriate value for homogeneous strings. Another
E string, aluminium wrapped on steel, is indicated towards the top left of the coloured region. The remaining six strings are
all wrapped D strings from three manufacturers and show a remarkable unanimity of choice: Z,.;, = 0:73S .-

curiosity with a desire to have some technological impact on
the understanding and manufacture of instruments and their
components. Perhaps with better understanding, it will
become possible to achieve consistently good playing
qualities in relatively cheap student violins. A more
immediate hope concerns one particular component of these
ancient instruments that has consistently changed with
technology: the nature of the strings. It can be hoped that, if

the existing models are sufficiently realistic, they will
provide a new basis for string design that has up until now
been based on trial, error and experience. Computers that are
fast enough and running models that are accurate enough can
eventually be expected to test strings as yet unmade with
equal facility and accuracy to the trials of a skilled player.
Computer-aided design will then have come to one part of
the ancient art of making violins.
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