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Summary

A general class of models of the bowed string is considered. The effect of the bow is idealised
in the usual way as a nonlinear friction force f whose ratio to normal bow force ¥y depends only
on relative velocity at a single point of contact with the string, while the string and its termina-
tions are represented as a linear system with an impulse response g(¢) at the bowing point. Thus
all the complexities of real strings on real instruments can be allowed for, as long as they are
adequately described by linear theory; and all models studied in the past are included as special
cases.

A problem of particular interest is the change in vibration waveform and period as Fy is
varied. This is found to be in accordance with earlier qualitative predictions, apart from one
feature which is familiar from casual observation but which has not previously been explained:
as Fy increases beyond a certain critical value, there is a tendency for the oscillation period
to increase. This “flattening effect” occurs even for an idealised model string with an exactly
harmonic series of natural frequencies, and is caused by a hysteretical difference between the
transitions from sticking to slipping and vice versa.

A fast algorithm for solving the relevant equations has been implemented on an interactive
computer system which enables the model string to be “played”: Fy, and the bow velocity can be
varied during computation. Thus it is easy to simulate transient motions of musical interest
as well as periodic motions. Examples of starting transients are given, together with an example
of a “wolf note” in which the behaviour is found to be qualitatively consistent with both the
Raman and the Schelleng descriptions. The computer program has been checked by detailed
comparison of its results with those of Schumacher obtained in the companion paper [11] by
a completely different approach.

Uber die Grundlagen der Dynamik gestrichener Saiten

Zusammenfassung

Es wird eine allgemeine Klasse von Modellen einer gestrichenen Saite betrachtet. Die Wirkung
des Bogens wird dabei wie iblich idealisiert als nichtlineare Reibungskraft f angenommen,
deren Verhiltnis zur Bogen-Normalkraft Fy, nur von der relativen Geschwindigkeit am Kontakt-
punkt mit der Saite abhéngt. Die Saite und ihre Enden werden als lineares System mit einer
Impulsantwort ¢(f) am Anstrichpunkt dargestellt. Dadurch koénnen die Vorgidnge bei realen
Saiten auf realen Instrumenten in ihrer ganzen Komplexitdt beriicksichtigt werden, solange
sie angemessen durch eine lineare Theorie beschreibbar sind; alle bisher untersuchten Modelle
sind als Spezialfille enthalten.

Ein besonders interessierendes Problem ist die Anderung der Schwingungsform und der Periode
mit Py. Sie befindet sich in Ubereinstimmung mit fritheren, qualitativen Aussagen, jedoch mit
einer Ausnahme, die aus gelegentlichen Beobachtungen bekannt ist, bisher aber nicht erklirt
werden konnte: Wenn F'y iiber einen bestimmten kritischen YWert hinaus ansteigt, zeigt die
Schwingungsperiode die Tendenz, ebenfalls anzusteigen. Diese Tonhéhenerniedrigung tritt sogar
bei der idealisierten Modellsaite mit ihrer genau harmonischen Reihe von Eigenfrequenzen auf.
Er wird verursacht von einer durch Hysterese bedingten Differenz zwischen den Ubergingen
vom Haften zum Gleiten und umgekehrt.

Ein schneller Algorithmus zur Lésung der relevanten Gleichungen wurde in ein interaktives
Computersystem implementiert, wodurch ein ,,Spielen‘* der Modellsaite méglich wurde, d.h. Fy
und die Bogengeschwindigkeit konnten wihrend der Berechnung verindert werden. Damit
war es moglich, auf einfache Weise sowohl musikalisch interessierende Ausgleichsvorginge
als auch periodische Bewegungen zu simulieren. Es werden Beispiele fiir Einschwingvorginge
und fir einen ,,Wolfton* angegeben. Fiir diesen zeigt sich, daB die hier verwendete detaillierte
Dynamik sowohl mit den Beschreibungen nach Raman als auch nach Schelleng qualitativ konsi-
stent ist. Das Computerprogramm wurde durch detaillierten Vergleich seiner Resultate mit denen
von Schumacher gepraft, die mit einem véllig anderen Ansatz erhalten wurden und die in der
begleitenden Arbeit [11] dargestellt sind.
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Sur les principes fondamentaus de la dynamigue de la corde frottée

Sommaire

On examine tout un ensemble de modéles pour la corde frottée par ’archet. Selon 1'usage,
Paction de I’archet sera symbolisée par une force de frottement non linéaire f dont la relation
avec la force Fy, exercée par I’archet normalement & la corde dépend seulement de la vitesse
relative au point de contact de ’archet avec la corde, tandis que la corde et ses extrémités sont
interprétées comme un systéme linéaire présentant une réponse impulsionnelle g(f) au point
frotté. Ainsi il pourra étre tenu compte de toutes les particularités, méme les plus complexes,
des cordes réelles montées sur des instruments réels pourvu qu’elles puissent étre décrites d’une
maniére adéquate par une théorie linéaire. De plus tous les modéles étudiés dans le passé seront
englobés comme cas particuliers.

Un probléme spécialement intéressant est celui du changement de forme et de fréquence de la
vibration de la corde en fonction de Fy,. Ceci s’accorde avec des prédictions qualitatives anciennes,
sauf pour la particularité suivante, qui est bien connue grice & des observations fortuites, mais
n’avait pas pu étre expliquée jusqu’ici: lorsque Fr, dépasse une certaine valeur critique, la période
d’oscillation a tendance & augmenter. Cet effet de «bémolisation» apparait méme pour une corde
du modéle idéalisé exhibant une série d’harmoniques exacts de fréquences naturelles; il est causé
par une différence due a I’hystérésis entre les transitions adhérence-glissement et glissement-
adhérence.

Un algorithme rapide pour résoudre les équations du probléme a été réalisé pour un systéme
de calculateur conversationnel qui permet en quelque sorte de «jouer» la corde modélisée en
faisant varier Fy, et la vitesse de P’archet au cours du caleul. Ainsi il est aisé de simuler les mouve-

" ments transitoires ou périodiques qui présentent un intérét musical. On présente des exemples

de transitoires d’attaque et un exemple de note «hurlée» dont les détails dynamiques sont quali-
tativement en bon accord avec les descriptions données par Raman et par Schelleng. Le pro-
gramme du calculateur a été mis & ’épreuve par comparaison détaillée de ses résultats avec ceux
que Schumacher a obtenus dans Iarticle suivant [11] par une méthode complétement différente.
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1. Introduction

In the past, motion of the bowed string has been
studied from a number of points of view. Following
the early observations of Helmholtz and others
[1], [2], the first comprehensive theoretical dis-
cussion of the dynamics of the system was given
by Raman [3]. He used two models. The first was
a kinematic description of a hierarchy of periodice
motions, including the basic “Helmholtz motion”
[4], which apparently explained most of the com-
plicated behaviour previously observed on the
hypothesis that the waveform of string velocity
at the bow is a rectangular wave. The second model,
which is now usually called the “Raman model”,
was a dynamical model in which the string was
assumed to be an ideal, flexible string terminated
in real, frequency-independent mechanical resis-
tances. For the problem in which such a string
is “bowed” at a single point dividing the string
in a rational ratio p:¢, the equations describing
the motion reduce to a noenlinear difference equa-
tion [5], [6] because propagation and reflection are
non-dispersive. Thus Raman was able to calculate
quite a number of the periodic motions which the
model allows, although with hand calculations he
was restricted to cases in which p + g was 24 or less.

More recently, Schelleng summarised and re-
interpreted some parts of Raman’s work in a paper
containing much general insight into various aspects
of bowed-string motion [7]. In particular Schelleng

focussed attention on delineation of the steady-
state tolerance range in bowing-parameter space,
the region for which musically-useful periodic (or
in some cases nearly-periodic [8], [24]) motion may
be sustained. He also extended some earlier ideas
of Cremer and Lazarus (9], who were the first to
consider models of the string in which the travelling
Helmholtz “‘corner” is not perfectly sharp, but
instead is somewhat rounded. Their models enabled
Cremer and Lazarus to investigate the variation
of vibration waveform within the tolerance range.
(Raman’s model has perfectly sharp corners, and
hence no variation.)

One phenomenon, well-known in real bowed
strings but not accounted for by any of these
previous models, is the “flattening effect”. As one
presses harder with the bow the note being pro-
duced usually goes flat, typically by a small frac-
tion of a semitone. The effect is especially easy
to produce when playing with a slow bow in a high
position on a thick string, such as the violin G
string, and is avoided in normal playing. Here
we are talking about a small, continuous flattening
of pitch, not the gross change to a raucous, much
lower “‘piteh’” characteristic of bowing forces above
Schelleng’s maximum [7]. In this paper we propose
a model which predicts the flattening effect and
associates it with a hysteresis phenomenon not
previously noted in this context so far as we
know.
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As well as dealing with this specific effect we try
here to unify earlier methods of treatment of the
bowed-string problem, in a formulation which
encompasses a wide range of possible models and
which gives insight into the range of behaviour
to be expected from these models. As a result
we are led to an efficient method for numerical
simulation of general, transient bowed-string mo-
tions, with realistic corner-rounding taken into
account.

Another suggestion emerging from our formula-
tion is of a new measurement which may be made
on instruments, namely the “Green’s function”
or impulse response at the bowing point, which
contains all the information necessary to a simula-
tion of the string motion in any model where the
string is bowed at a point. This measurement
is a property of an instrument and its strings,
and is perhaps the most direct and simple objective
measure of the behaviour of the instrument as felt
by the player. Thus it might become useful along-
side measurements of instrument-body response
curves and admittance curves, and studies of
eigenmodes of the instrument body, as a tool for
seeking physical correlates of the subjective quali-
ties of different instruments. A closely related
measure of the behaviour of the instrument (the
string input admittance, or Fourier transform
of the Green’s function) has already been studied
experimentally by Hancock [10] and is discussed
by Benade [13].

In a companion paper, Schumacher [11] discusses
the problem of finding periodic solutions to the
models discussed here. His discussion complements
the one given here, and the two papers should be
read together.

2. General formulation

We now derive the basic equation satisfied by
the string motion, when the bow speed vy and the
normal bow force Fy are given. We use the simple
idealisation that the bow has zero width, and that
the frictional force exerted by the bow on the
string depends on relative velocity only. In other
words, we assume that a force is applied at one
point of the string, the force depending on the
velocity of the string at that point according to
a known functional dependence f(v) of the type
shown in Fig.1. The entire curve is supposed
to scale vertically with Fy. (All previous work
has made these assumptions, apart from some
qualitative speculation about the effects of finite
bow width [3], [5]. It has recently become apparent
that some important features of real bowed-string
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Fig. 1. Friction-curve idealisation. For given bow speed vy
and normal bow force Fy, the friction force f is assumed to
be a function of velocity v alone. Steady-state measure-
ments [14] suggest a relationship like that shown.

motion do in fact depend on the finite width of
the bow [8], [24], but we ignore such effects here.)
When the point (v, f) lies on the very steep, nega-
tively-sloping part of the friction curve we say
the string is “sticking” to the bow; otherwise,
we say that it is “slipping”.

As well as being connected by the friction curve
of Fig. 1, the friction force and velocity at the
bow are connected by the dynamical behaviour
of the string and its terminations, a complicated
system which we can regard to good approximation
as being linear. If we suppose this linear system
to have a causal Green’s function or impulse
response g (f), we are immediately led to the equa-
tion

v(t) = Jg') flv(t —1))de, (1)

which is a nonlinear integral equation of the Vol-
terra type [12]. (By definition, ¢g(¢') =0 for ¢’ <0.)
Thus the entire problem is formulated in terms
of the motion of the string at the bow. The motion
at any other point, for example at the bridge of
the instrument, may be obtained from the motion
at the bow by a simple convolution of v(t) with
the appropriate transfer function.

Eq. (1) embodies one essential ingredient of the
philosophy behind the present treatment of the
bowed string: as far as possible, we remain in the
time domain rather than the frequency domain.
It appears that despite the mathematical simi-
larity of our problem to that of sustained oscilla-
tions in wind instruments treated so successfully
by Benade and others [13] in the frequency domain,
the time-domain viewpoint often gives the greater
insight for the bowed string. An important reason
for this will emerge in the next section.

One general point about eq. (1) should be noted
before we pass on: in the actual, physical situation,
the v(f) which enters the equation is really the
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velocity of the surface of the string, since the
friction force is applied tangentially to the surface.
Thus in a string of finite diameter having finite
torsional characteristic impedance, the Green’s
function g (#) will contain information about reflect-
ing torsional waves as well as about transverse
waves. It is known that this complication cannot
be ignored in the real situation [7], [14], but for
the purposes of the discussion it will be convenient
(and it has hitherto been customary) to begin
by imagining that the g (¢} of interest is calculated
from consideration of transverse motion alone.
We shall return to this issue briefly in section 4.

Similarly, the argument of f(v) is not in reality
the velocity of the string alone, but that of the
string relative to the bow hair. It can easily be
shown [11] that this still yields a problem of the
form of eq. (1), provided we add to ¢(¢) the impulse
response for the elastic behaviour of bow hair
and stick, an approximately linear system which
has many vibration modes in the frequency range
of interest [15]. This contribution to ¢ is numerically
small, however [14], [15], and we ignore it entirely
for the moment: the models we develop and solve
in this article, and all those studied in the past,
apply not to a real bow but to a rigid, rosined
stick having a single point of contact with the
string. (We are currently making observations of
the motion of real strings when bowed with just
such a rigid stick. These experiments, which as far
as we know have not been carried out before,
provide the simplest test of our theory as well as
giving insight into the differences between sticks
and real bows, and it is hoped to report on them
in the near future [8].)

As mentioned in the Introduction, the Green’s
function g(¢) (ignoring any contribution from the
bow) may be measured directly from a string
on a real instrument. It is the velocity response
of the string at the supposed bowing point to a force
impulse applied there at time ¢{=0. Now a force
impulse is hard to realise in practice, but various
other forms of applied force may be used, from
which the Green’s function may be obtained by
suitable analysis. The simplest is a step function
of force, easily applied by “‘plucking” the string
with a fine thread or wire which breaks when the
string is drawn aside [16]. The surface velocity
response at the plucked point can be registered by
the laser-doppler technique used by Hancock [10].
If the torsional motion is to be ignored, a magnet
with suitably-designed pole-pieces can be placed
athwart the string and the voltage induced across
the ends of the string measured [7], [14]. Since the
system we are studying is assumed to be linear,
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we obtain the Green’s function from this measured
response by simple differentiation: a delta function
is the time derivative of a step function, and for
a linear system whose properties do not change

Velocity ——

Timg ——

Fig. 2. Green’s function g(¢) (i.e. velocity response at a
point P to a force impulse applied at the same point P):
(a) for a cello 4 string, measured by the magnet technique
when P is about 0.14 of a string length from one end; (b)
the same, with expanded time scale; (c) for Raman’s dy-
namical model, involving only delta functions (infinitely
tall and narrow); (d) for a simple case of the rounded-
corner model developed here. The time-scale in (c) and (d)
is the same as that of (b), to aid identification of features
in (b). Similarly, the position of P for (c) and (d) is the
same as for (b). The initial spike of (b) may not be well
resolved by our present magnet technique, and is probably
narrower in reality.

with time the derivative of the input produces
the derivative of the output. Fig. 2a shows an
example of a Green’s function measured with the
magnet technique at a point on the open A string
of a cello about 0.14 of a string length from the
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bridge. This of course does not show any torsional
effects. Fig. 2b shows the detailed structure near
t=0.

Green’s functions may also be calculated from
particular theoretical models of the string. For
comparison with Fig.2b we give in Fig. 2¢ the
Green’s function for the Raman model. In this case,
g(2) is composed entirely of delta functions, which
is one way of seeing why the equation governing
the motion is a difference equation. In Fig.2d we
give the corresponding portion of a Green’s function
for a simple case of the rounded-corner model
which we develop in section 5 below (see caption
to Fig. 9).

One can compute transient bowed-string motion
directly from such a measured or calculated Green’s
function, integrating eq. (1) forward in time with
some particular friction curve f(v). However, it is
found that this method is very slow (because the
convolution integral to be evaluated grows ever
larger as the simulation proceeds), and also it is
sensitive to measurement and rounding errors in
the Green’s functionl, Thus it is desirable for
modelling purposes to supplement the direct use
of eq. (1) by a more efficient method, and we de-
scribe such a method in the final section. Before
that, however, we must show how to resolve an
ambiguity which can arise in the solution of
eq. (1). The answer will lead inter alia to our ex-
planation of the pitch flattening effect.

3. The small-time behaviour
of the Green’s function, and hysteresis

The first feature of the Green’s function plays
a crucial role in the solution of eq. (1). For an ideal
string this feature is a positive-going delta function,
whose magnitude is half the characteristic admit-
tance (Y, say) of the string. (The numerical value
of Y will be modified if we allow for torsional waves
or longitudinal bow-hair motion [7], [11], but the
argument we are about to use is quite unaffected.)
Thus for any reasonable Green’s function of a real
or model string, we would expect the first feature
to be either a delta function or a sharp “‘spike”
of some sort, the area under which we shall denote
by 4+ Y. In either case, it is convenient to consider
the effect of this first feature separately, and leave
the rest of the Green’s function to be accounted
for later.

1 More sophisticated methods of determining g(¢), e.g.
white-noise excitation, might suffer less from the high-
frequeney errors arising from differentiation of the pluck
response [17]. We have not explored any such methods
in detail.
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If g (¢) starts with a delta function of strength 1 Y,
we can write eq. (1) in the form

v(t) =3 Y[(t) + vn(t) (2)

where f(f) is an abbreviation for f(v(¢)),

oet) = [ [0t — ) ar, 3)
0

and
gey=%Yo()+4(t),

§ being finite in the neighbourhood of ¢ =0 and
zero for t<C 0. Thus vn(f) depends only on the past
history of the force f at the bow, and is the velocity
at the bowing point which would obtain if the bow
were suddenly removed. It is due to the net effect
of reflections returning from the two ends of the
string.

If g(¢) starts instead with a spike of finite width
described by a function 1Y k() such as that
depicted in Fig. 3, and if § is redefined by

9(6) =1 YO + (), @)
0 jt
t—

Fig. 3. A hypothetical example of the initial spike k(¢) of a
Green’s function, on a time-scale expanded still further
than in Fig. 2. (The spike width 4¢ is referred to in Fig. 6.)

with

;[olc )Ydt' =1, (5)
then

v(t) =3 Yf(t) + on(®) (8)
where

)= fk ) fog —1))de . (7

Here vy (t) is still defined by eq. (3), but with the
new definition (4) of §(¢). Spike shapes different
in detail from that in Fig. 3 may arise from partic-
alar physical models, as will be discussed in sec-
tion 4. Note however that k(¢) will always jump
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discontinuously at t=0-4 to a positive value,
whether finite or infinite, for otherwise the system
would have infinite effective mass.

The delta function case (eq. (2)) is a useful
idealisation in practice, and we discuss it first.
For given vy, eq. (2) can be solved for the new
values of f and v at time ¢ by the simple graphical

T Slope 2/Y
f

(t) v(t) 0

Fig. 4. Graphical construction for determining / and v at
time ¢, given o (f), in the “‘delta-function case’ (see text).

construction shown in Fig. 4, first used by Fried-
lander [5] and Keller [6]. In Fig. 4, f and v are given
by the intersection of the straight line

f=2(v—un)/Y

with the friction curve. However, for sufficiently
large Fy the friction curve can intersect the sloping
line in three points rather than one, as shown in
Fig. 5, and we have an apparent ambiguity. This

Fig. 5. Friedlander's ambiguity. The solid sloping line now
has three intersections with the friction curve instead of
one. This happens for any #y, falling in the interval 1.

ambiguity, and a possible means of resolving it,
was first discussed by Friedlander [5]. Our formal-
ism enables us to generalise Friedlander’s discussion,
and moreover to show that the correct resolution
of the ambiguity is given by a simple hysteresis
rule. This leads to an explanation of the flattening
effect described in the Introduction. As far as we
know, neither the rule nor its musical consequence
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has been pointed out before. Friedlander’s ambi-
guity arises from the initial delta function of the
Green’s function, and we now resolve it by con-
sidering eq. (2) as a limiting case of eq. (6) for
a wide class of spike shapes k().

A numerical example of the behaviour given
by eq. (6) is shown in Tig. 6. In this case, k(f) is

V /
D
® | 5 W ® 5

capture ] Retease

0 Pp— t— ¥

Fig. 6. Numerical simulations of (a) capture and (b) release
transients, using the spike function k(¢) shown in Fig. 3.
The spike width At is marked to indicate the time scale.
vp increases in (a) and decreases in (b), through the same
range in each case. Note the asymmetry between capture
and release: capture takes place when vy reaches v (see
Fig. 5), but release is delayed until vy, reaches vy. The force
curves (marked f) give the detailed shape of the “spurs” in
Fig. 3 of Schelleng [7], shown here on a vastly expanded
time scale.

given by Fig. 3 (shown there expanded in time).
Irig. 6a shows velocity v and force f during an
idealised “capture’ situation, that is to say as vy
increases uniformly across the “ambiguous” inter-
val I of Fig. 5. Fig. 6b shows velocity and force
during ‘‘release”, as vy decreases at the same
uniform rate across 1. Note that when vy enters I,
the string simply remains on whichever branch
of the friction curve (slipping or sticking) cor-
responds to its previous state; v and f follow vy
more or less as the graphical construction for the
delta-function case indicates (Fig. 4) as long as vy
remains within I. The rapid transition from slipping
to sticking, or vice versa, does not take place until
oy, reaches the far end of the interval I. The time
for the transition scales with the width A¢ of the
spike k(t).

Computations for various other spike shapes k(¢)
reveal the same general pattern of behaviour. To
summarise :

Slipping persists until vy has increased as far
as v¢; then capture occurs (v rapidly traverses
the portion of the friction curve shown dashed
in Fig. 7a, and reaches vp). Sticking persists
until vy has decreased us far as vy; then release
oceurs (v rapidly traverses the portion of the
friction curve shown dashed in Fig.7b, and
reaches vgip).
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/
—
v, T
@ .
Capture
f
/Vr' %tip y—

®

Release

Fig. 7. The hysteresis rule. During capture (a) and release
(b}, the dashed portions of the friction curves are traversed
in a time of order the width At of the initial spike k(¢) (and
instantaneously in the limit in which the spike becomes a
delta function).

Since vy F=v, (except for values of Fj below some
rather low value Forit, say), this behaviour pattern
involves a kind of hysteresis, an essential differ-
ence between capture and release.

The rapidity with which the dashed portions
are traversed is the greater, the narrower the
spike k(t). In the limit in which the spike tends
to a delta function, the dashed portions of the
friction curve in Fig.7 are traversed instan-
taneously. With the word “rapidly” replaced
by ‘“instantaneously’”’, the indented statement
above constitutes the hysteresis rule for resolving
Friedlander’s ambiguity when solving eq. (2). (Note
that the term ‘“‘hysteresis” as used here has nothing
to do with the possibility, discussed later, of
hysteretical effects in the friction characteristic
itself — i.e. departures from the present idealisa-
tion that f is a function of v alone.)

Solving eq. (6) for special cases of k(¢) can never
entirely remove the doubt that there might still
be some other model producing quite different be-
haviour. However it will next be shown that
a large class of spike functions k(t) produce essen-
tially the same behaviour as that just described.
This class, essentially those k(!) which decrease
monotonically for t>0, is specified precisely in
Appendix A (below eq. (A.13)). It includes all
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reasonable physical models of which we are aware.
The result ensures that all these models, in the
limit in which the spike k() becomes shorter and
taller while preserving its area, will give the same
hysteresis rule for use with eq. (2). We conclude
that the delta-function model, together with the
hysteresis rule, provides a physically reasonable
idealisation of virtually any model.

To establish the general result we must demon-
strate two things, for all k(¢) in the class considered.
The first is the persistence of the current state of
sticking or slipping when vy enters the interval I.
The second is that a transition to the other possible
state takes place, on the time-scale At of the spike
width, when vy emerges from I. We can make both
these aspects of the hysteresis rule immediately
plausible by generalising a linear stability result
mentioned by Schelleng [7]. The generalised stabil-
ity result, proved in Appendix A, is also a useful
preliminary to a more rigorous discussion given
in Appendix B. The linear stability theory concerns
the behaviour of v(t) when vy is held constant
and the friction curve of Fig. 1 is locally replaced
by a linear function

fv) = 4v + B. (8)

As Schelleng remarked, and as we show in Appen-
dix A, the corresponding steady-state solution

v=(m+ 3 ¥ B)(1—4Y4d) 9

is stable if and only if the slope 4 of this linear
“friction curve’ satisfies

A4<2]Y. (10)

Note that because the solution (9) represents a
steady state, it is given by precisely the graphical
construction of Fig. 4, just as in the delta-function
case. The stability criterion (10) holds for any % (f)
in the class considered. Together with the obvious
fact that the characteristic times of disturbances
to the steady state scale with At, it makes plausible
the persistence of the current state of sticking
or slipping while the slope of the friction curve
is less than 2/Y, provided vy (t) varies slowly com-
pared with the (very fast) time-scale A¢. (Of course,
the sticking portion of the friction curve is taken
to have a very large negative slope, not a positive
one, since sticking is observed to be a statically
stable state.) The instability of the solution (9)
for slopes d greater than 2/Y also makes it plausible
that » will never, in practice, remain near the
middle one of the three intersections in Fig. 5
for longer than a time of order A¢ ([7], § ILK]).

The main mathematical question left open by
the linear theory is whether finite-amplitude dis-
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turbances and the actual nonlinear friction curve
f(v) admit some other kind of behaviour, such as
persistence of finite-amplitude oscillations induced
at capture or release. Such possibilities are, how-
ever, eliminated by the discussion given in Appen-
dix B, where it is shown that whenever v, takes
on a constant value lying outside I the single inter-
section then represents a steady solution which is
stable to disturbances of any amplitude.

4. The small-time behaviour
for particular physical models

Now that we have seen how a wide class of initial
spikes k(t) produce essentially the same behaviour,
it is apparent that no very detailed study of this
aspect of particular physical models is justified
(unless we are interested in extraordinarily fine
detail in the bowed-string waveform). However,
it is worth looking briefly at the most obvious
physical models, if only to verify that they fall
within the assumed class of k's.

Conceptually, the simplest physical model which
produces a spike of finite width rather than a
delta-function is an ideal string having a small
mass m concentrated at the bowing point. This
is the model suggested by Friedlander [5] to cir-
cumvent the ambiguity which he first pointed out,
and he argued that it might also model some
aspects of the finite length of string in contact
with a real bow. However, he did not examine its
consequences in any detail. The k() resulting from
such a model is readily seen to be

E(t) = (2/Ym)e-2ti¥m for ¢t>0, (11)

and is illustrated in Fig. 8a. This model has the
easily demonstrated property that in the transi-
tion from slipping to sticking, and vice versa, the
approach to the new state is monotonic. This
contrasts with the weakly oscillatory behaviour
at capture already illustrated in Fig. 6a for a
different spike shape.

The next model which one might think of using
is the classical, slightly stiff string (e.g. Rayleigh
[19], §188). We illustrate the behaviour of this
model by the simple example of the Green’s funec-
tion at the midpoint of a stiff string with hinged
ends:

g(t) oc > cos(wpt) with

wn? =2 (1 4 yn?) (12)

where y is a small positive parameter and the sum
is taken over odd integers n from 1 to infinity.
It turns out that this is far from being a desirable
Green’s function to study: the series of eq. (12)
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Fig. 8. Spike functions k(t) for two particular physical
models: (a) an ideal string with a point mass at the bow;
(b) a slightly stiff string, with the high-frequency behaviour
modified according to Timoshenko beam theory. In case (b)
there is a “‘residual delta-function’ at ¢ = 0, accounting for
roughly a third of the total area in this particular case. The
time interval At marked in (b) corresponds to 1/100 of a
fundamental period of the string, for a case in which the
“‘anharmonicity parameter” nmin of Schelleng [7] is equal
to 16 (thus corresponding to Schelleng’s measurement of
a violin aluminium-on-gut D string).

is known to represent an extremely pathological
function [20]. This undesirable mathematical be-
haviour is not special to mid-point bowing, and
results from the incorrectness of the classical stiff-
string equation at wavelengths comparable to the
string diameter or smaller. Thus some modification
of the high-frequency terms in the series (12) is
necessary, and different detailed models result
from different modifications. A model in which
Timoshenko beam theory [21] is used to suggest
a more physically reasonable asymptotic form of
the terms in series (12) wyields the function k()
shown in Fig. 8b. As frequency tends to infinity
in this model, the phase speed of waves tends to
a constant value roughly an order of magnitude
larger than low-frequency transverse-wave speeds,
for parameter values appropriate to practical
strings.

One feature of Fig. 8b should be noted: because
of the model dispersion property just mentioned,
k(t) has a delta-function at ¢t =0 on top of a finite-
width spike. So in this case Friedlander’s ambiguity
comes back, but at larger values of Fy, than before
because the strength of the ‘‘residual delta func-
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tion” is less than the total area of unity. We
presume that a similar hysteresis rule will apply,
but this time its justification would have to be
sought outside the basic model as formulated in
section 2, a problem which would require us to go
more deeply into the underlying physics. Fortunate-
ly the resolution of this guestion (which we do not
attempt here) in no way affects the hysteresis rule
of section 3, since the class of £(f)’s for which the
stability analysis of Appendices A and B holds in-
cludes cases with residual delta-functions like that
in Fig. 8b.

The residual delta-function also ocours when we
extend our interpretation of string motion to
include torsional string motion and bow-hair
motion as well as transverse string motion. As
Schumacher demonstrates [11], these two effects
both enter the problem in the same way. Simple
models of either are likely to produce extra delta-
function contributions to the total k(f). From
published measurements we might expect the tor-
sional effect to dominate, and in the presence of
bending stiffness to produce a k(f) qualitatively
like that of Fig. 8b, with a residual delta-function
whose area depends on the torsional-to-transverse
admittance ratio [7].

We will not discuss this issue in any further
detail, but it is worth mentioning the two most
obvious aspects of the basic physical model which
would need to be re-examined in order to resolve
the ambiguity due to a residual delita-function.
The first is the assumption of a single point of
contact between the bow (or stick) and the string.
This is obviously an idealisation which will even-
tually break down when very short length-scales
are considered. The second aspect is the “‘friction
curve idealisation’’, in which we have assumed
that the function f(v) is really independent of other
factors such as “memory’ effects. To describe the
motion in very fine detail one would no doubt
have to take account of the tribology of the
rosined bow-string contact.

A direct experimental test of the friction-curve
idealisation deserves the attention of experi-
menters in any case, since the only existing mea-
surements [14] were taken at constant relative
velocity. For all we know, rosin tribology may
significantly modify the grosser features of bowed-
string behaviour as well. For instance if departures
from the friction-curve idealisation involve addi-
tional hysteretical effects such as reported for
materials other than rosin [18], these would prob-
ably tend to add to the hysteretic effect described
above. A promising experimental technique for
investigating rosin tribology is essentially that
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used in ref. [18], involving analysis of the motion
of an audio-frequency “Froude’s pendulum’ ex-
cited by a bow. Another promising technique is
suggested in the second reference of [8].

5. The remainder of the Green’s function,
and an efficient method
for numerical implementation
of bowed-string models
with realistic “corner-rounding”

Now that we know how to deal with Friedlander’s
ambiguity, we can return to a discussion of the use
of egs. (2) and (3) for the simulation of transient
as well as periodic motions of the string. Having
discussed the small-time behaviour of the Green’s
funection, we now look at the next features. Re-
ferring back to Fig. 2b we see that, after the initial
spike, there follows a pair of inverted pulses with
different time delays. These are, of course, the
reflections of the initial puilse from the two ends
of the string. During their journeys the reflected
pulses are modified in various ways, both by effects
internal to the string and by the reflection properties
of the terminations. The pulses become increasingly
rounded, and rapidly develop dispersive precursors
because of the anharmonicity due to string bend-
ing stiffness; the gentler oscillations visible between
the two first reflections are due mainly to bridge
motion.

If, as we have assumed, the string and its termi-
nations behave linearly, we can represent the total
modification of the returning pulses by convolution
of the velocity waveforms sent out from the bow
with a suitable pair of transfer functions, one for
reflection from each end of the string. These two
“corner-rounding functions”, as we shall some-
what loosely call them, can in principle be deter-
mined directly from analysis of measured Green’s
functions such as that shown in Fig. 2b. In an
idealised model using a string with harmonic over-
tones, but with damping smoothly increasing with
frequency, the corner-rounding functions can be
simple, symmetrical humps. Fig. 2d shows the
Green’s function for just such a model, and here
the corner-rounding functions have almost pre-
cisely the shapes of the first two inverted spikes.

Once we know the initial behaviour of ¢g(¢) and
the two corner-rounding functions for the two
sections of the string, we can calculate the rest
of the Green’s function. All succeeding events are
simply further reflections of the original pulse as
it travels back and forth along the string, the pulses
in g(¢t) becoming ever more rounded. Each reflec-
tion can be derived from the previous one by con-
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volution with the appropriate corner-rounding
function. It follows that if we wish to simulate
transient motion of the bowed string by solving
egs. (2) and (3) numerically, we need not store
the entire Green’s function and past history of
v(¢) for hundreds of string periods and perform
huge convolution integrals at each time step. In-
stead we need only store the velocity waves v, (f)
and og (t) travelling away from the bow to the left
and right respectively, and convolve the retarded
waves vg, (f — 1) and vg (f — ig) with the appropriate
corner-rounding functions and add the results
to give vn(t) at each time step, where {1 and ig
are the reflection times for the two sections of the
string. Thus the “history” of the motion need only
be stored for a short time, namely t, or tg plus the
decay time of the corresponding corner-rounding
function, rather than the decay time of the whole
Green’s function. -

This amounts to the procedure outlined by Cremer
[9], with two additional features. First, whereas
Cremer neglected the “‘secondary waves” produced
by partial reflection at the bow (as part of the
corner-sharpening process due to interaction of
rounded corners with the bow-string contact), our
procedure automatically keeps track of all such
secondary waves and follows the evolution of the
complete string motion. Second, we introduce the
hysteresis rule of section 3, whenever F; exceeds
the value Fer¢ for which Friedlander’s ambiguity
arises. A computer program has been written to im-
plement the procedure, and its detailed correctness
has been verified by closely comparing results with
those of Schumacher [11], who has computed peri-
odic solutions to some of the same models by a
quite different approach. For this comparison, our
program was left to run for many hundreds of string
periods to settle down to a precisely periodic solu-
tion.

The results show a significant consequence of the
hysteresis behaviour described in the previous
section. If we set up an approximation to the
classical ‘“Helmholtz motion” in our model string,
it is not hard to see that the asymmetry between
capture and release at the bow imposes a net
delay in the round-trip time of the Helmholtz
corner. In other words, the note plays flat, other
things being equal. The kinematical essentials of
the flattening process have been explained at
greater length in a previous article [8] using a
graphical representation like that of Cremer and
Lazarus [9]. The flattening increases with the

“amount of hysteresis, which in turn increases with
normal bow force Fy, and decreases with increasing
bow speed. Also, the amount of flattening evidently
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scales with the breadth of the humps in the corner-
rounding functions. All these features are broadly
in accordance with observation: flattening is
greatest at large Fp and small bow speed, and
when playing in high positions on thick strings.

Computed examples were given in reference [8],
and in Fig. 9 we reproduce three of these. Further
examples are given in Fig. 5 of the companion
paper by Schumacher [11]. Both sets show how
the velocity waveforms v (f) and playing frequencies
vary because of hysteresis, corner-sharpening,
and secondary-wave generation, as Fy is varied.
Schumacher’s examples incorporate effects of string
anharmonicity, as well as torsional vibration modes

-

Fig. 9. Typical velocity waveforms at the bow from com-
puter solutions of the corner-rounding mode] described in
the text, for a model string with harmonic overtones, whose
@’s decrease as frequency increases. J'y, varies from rather
low in (a) to near maximum in (c¢); see below. The dotted
curves in each case denote the ideal ‘“Helmholtz” wave-
forms: the flattening effect is visible in (b) and (c¢), the
frequency having been lowered by about 1.59) and 39
respectively in these two solutions. The corner-rounding
function used for these runs was a symmetrical, Gaussian
hump exp (—t2/tc?), so that the low-Fy, solution (a), which
is non-hysteretic, plays at the natural pitch of the string
and gives a symmetrical velocity waveform. In (b) and (c)
arrows indicate the discontinuous velocity jumps across
the dashed portions of the friction curve in Fig. 7. The
corner-rounding time-scale . was 1/3/128 of a fundamental
period, giving a @ of about 300 for the fundamental string
mode. (Fig. 2d has the same corner-rounding function, but
with £, smaller by a factor (2/3)1/2.) The friction curve used
here had a coefficient of sticking friction of 1.0 (corre-
sponding to the tip of the curve), and a coefficient of sliding
friction of 0.2 at the nominal “‘Helmholtz” slipping velocity.
In units such that 1/2 ¥ = 1, the three bow forces used
were 0.4 vp, 3.0 vy and 5.0 vp. There are 128 time steps
per Helmholtz period in each case. The bow is 3/16 of the
way along the string.
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Fig. 10. Waveform of string-centre velocity at the bow in
the simplest model which allows for torsional string motion.
Torsional waves are assumed, somewhat unrealistically, to
be totally absorbed by the string terminations; and the
transverse overtones are harmonic as before. The torsional
and transverse string admittances are in the ratio 0.4. Fy
is large enough to cause the hysteresis effect described in
§ 3. The difference in size of the ripples near the beginning
and end of each sticking epoch recalls an experimental ob-
servation of Schelleng [7], and is another manifestation of
the hysteresis effect.

of the string. Fig. 9, by contrast, corresponds to a
much simpler Green’s function like that of Fig. 2d.
In Fig. 10 we give a further example, chosen to ex-
hibit clearly the pattern of ripples due to secondary
waves pointed out by Schelleng [7] (vide § I J).
In this example torsional motion of the string was
allowed, and the velocity of the string centre
plotted instead of v(f). Note the hysteresis-induced
asymmetry in the ripple pattern.

The present approach also allows us to simulate
various transient phenomena. We illustrate first
with a simple starting transient. Fig. 11a shows
velocity at the bow during a simulated “martelé”.
(The simulation has been implemented on a mini-
computer in such a way that the playing parameters
of bow force and bow speed may be changed at

|

SO

Fig. 11. Simulated and observed “martelé” starting tran-
sients (in which the initial condition is one of sticking, and
vy is rapidly increased from zero while /'y is decreased
from a high value). (a) Simulated, with the same simple
model that produced Fig. 10 but with a torsional-to-trans-
verse admittance ratio of 0.2 in this case; (b) measured with
the magnet technique from a violin G string stopped a
minor third up and played by a professional violinist; (c)
simulated, with the Raman model (in which no corner-
rounding, nor torsional motion, is allowed). The magnet
used in (b) unfortunately has rather broad pole-pieces, and
thus sees some string motion away from the bow.
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will from the computer keyboard during the simula-
tion: the model can be “played”.) For comparison,
an observed martelé transient is shown on a
comparable time-scale in Fig. 11b. This was ob-
tained using a (somewhat crude) magnetic trans-
ducer of the kind previously described, on a low B
flat played on the @ string of a violin (of no partic-
ular pedigree). Note that the observed and simu-
lated transients, while being obviously different
in detail, occupy similar times. It may well be
that with an experimental facility for accurately
measuring bow speeds and normal bow forces
(as well as friction curves) during playing, one
could produce a better-matched pair of real and
theoretical results; but no two real transients are
identical under practical playing conditions. In
addition, the player of the violin was much more
accomplished at his art than the “‘player” of the
computer program! In Fig. 11¢, a final example
of a starting transient is shown, this time from
the Raman model. This example, with no corner-
rounding effects, is visibly less realistic than
Fig. 11a.

Another transient phenomenon of interest is
the “wolf note”. By using a corner-rounding func-
tion for the ““bridge” end of the string of the kind
illustrated in Fig. 12, we can simulate the effect

oo

t —

Fig. 12. “Corner-rounding” function of the type needed for
wolf-note simulation. The @ of the decaying sinusoidal oscil-
lation (simulating the effect of a body mode) is 30 here. The
initial hump (which is in fact a smooth, Gaussian function)
gives frequency-dependent damping of string modes exact-
ly as before. The ratio of characteristic string impedance to
(8412, where 8 and M are effective stiffness and mass at
the bridge [23], is here 0.05. This ratio is unrealistically
large, but was chosen to make the decaying oscillation
clearly visible in the picture. Torsional motion is not
allowed for.

of a strong resonance of the instrument body.
When the playing frequency is sufficiently close
to the frequency of this resonance, we can obtain,
with suitable playing parameters [23], a waveform
such as that shown in Fig. 13. Here we see a
classical wolf note of the kind discussed at length
by Raman [27] and Schelleng [23]. The details,
including the phase relations between string and
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Fig. 13. The simplest kind of wolf note, simulated with one corner-rounding function replaced by a function similar to
that of Fig. 12, but with a body @ of 50 and a more realistic string-to-body impedance ratio ¥~1(SM)~1/2 = 0.005; cf.
Fig. 9 of Schelleng [23]. The upper trace is string velocity v(f) at the bow, showing the onset of double slip and
approximate phase-reversal at the beginning of each wolf cycle. The lower trace is velocity of the bridge, with the
vertical scale exaggerated by a factor 2. The phase relations, indicated by the vertical dashed lines, are roughly in
accordance with the discussions of Raman and Schelleng [23], [24], [27]. All conditions are the same as in Fig. 9, ex-
cept for the decaying oscillation in one of the two corner-rounding functions, and a bow force Fp = 0.8 vp. The
main pulses are shaped very like those in Fig. 9a. (Very small scale irregularities in individual pulse shapes are arti-
facts of the computer graphics. The pulse shapes, and the dashed lines indicating phase relationships, were deter-

mined from a much higher-resolution plot.)

body motion, are qualitatively as would be ex-
pected from the arguments given by those authors
(see [24], section 8), except that the phase change
between wolf cycles is somewhat less than 180°
(just as observed in an experiment by Firth [28],
Fig. 7) because the second slip tends to be triggered
early by secondary waves.

6. Concluding remarks

It appears that the model of bowed-string motion
elaborated here is capable of plausible behaviour.
However, it is not the last word on the subject,
We already know that finite bow width is important
for a correct description of the noise component,
or quasi-random departure from periodicity, of
real bowed-string motions [8], [24]. Also, more
experimental data is needed to determine relevant
properties of real strings on real instruments.
A particularly crucial area of present ignorance is
the damping and reflection properties of torsional
waves in strings. The present class of models can
easily simulate their effects, and they are certainly
important to the detailed waveform. Once the
experimental data are available, a quantitative
comparison of computed velocity waveforms with
experiment might be appropriate. This in turn
might show the extent to which the theory must be
modified to take account of longitudinal waves
and other nonlinearities of the string, and the
complexities in the behaviour of the body and
string which contribute to the shape of experi-
mentally measured corner-rounding functions [22].
The laser-doppler technique recently proposed by
Hancock [10] for precise observation of motion
at the string surface holds promise for obtaining
the needed data. We hope to be able to report
further progress on this problem before long.

We are at present also investigating the application
of the ideas of this article to other frictionally
maintained oscillators such as Froude’s pendulum
[18]. In addition to their importance in other
engineering contexts, such oscillators provide a
powerful experimental tool for investigating fric-
tion curves, and indeed the friction-curve idealisa-
tion itself.
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Appendix A
Schelleng’s eriterion for stability local
to the bowing point
We consider the linear problem in which in

place of a friction curve like that of Fig. 1, we use
a linear function

f=Av+ B.
This is the simplest problem in which to examine

the effect of different functions k(). We impose
a disturbance on the system by making vn change

(A1)
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from one steady value to another, specifically

L, i<
o, t>T>0
with the understanding that, for t<C 0, the system
is in the steady state
v=(1+3YB)(1 —§Y4),
=4+ B)/(1—}Y4)
(which is evidently a possible solution of egs. (A.1)
and (8)). For t>7T we then ask whether or not
the system approaches the possible steady state
v=3$YB[(1 - §Y4),
f=B/(l—-3}TY4).

(A.2)

(A.3)

(A4)

The system is stable if and only if it tends to this
new steady state for all functions wn(f) satisfying
eqgs. (A.2).

Write

Av=v— L YBJ(1 —LY4),

Af=f— B/(1—}T4) (A.5)
and choose units in which

1Y =1 (A.6)
for convenience. Then eq. {(6) becomes

Av( Ajlc YAv(t — ') dt’ +

+ A + @) (A7)
where k(') = 0 for ¢’ < 0,
A
=]t 10 (A.8)
lo, >0

and

pH) =0, 1[0, T]. (A.9)

We now take the Fourier transform of eq. (A.7),
and write V(w) and K(w) for the Fourier trans-
forms of Aw(#) and k(#) respectively, with the con-
vention

27K () = Tk(i) e-iotds . (A.10)

Then eq. (A.7) gives

V{w)=27n4K(w)V(w)+

+i27w + P(w) (A.11)

where P(w), the Fourier transform of p(¢), is an
entire (non-singular) function of w. Therefore
V(w) = [P(w) +

Li2rw)[l —2rAK (w)]. (A.12)

This transform is to be inverted using a contour
which passes above the pole at the origin but below
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all other poles of V(w), because to satisfy the con-
dition (A.3) for {<C 0 we need to be able to complete
the contour in the lower half-plane, and in the
process enclose only the pole at the origin. It now
follows by standard contour-integral techuniques
that the steady state represented by eq. (A.4) is
stable if and only if ¥ (w) has no poles in the lower
half-plane or on the real axis (excepting the pole
at w==0), i.e. if and only if

9 K(w)=1/4 (A.13)

is satisfied only at points where Im(w)>0. We
denote the lower half-plane by L, and L plus the
real axis by L.

Attention is restricted to spike functions k(¢)
which are non-negative and non-increasing for
t>0 (as well as zero for {<C0). We permit jump
discontinuities in k(¢), but assume that at least
some of the decrease of &k with ¢ is continuous:
specifically, there is some interval over which %
has a finite, negative slope k' (t). At { =0, a positive
delta function contribution is permitted, as in the
example of Fig. 8b. Now, writing w =« -+if, we
have from eq. (A.10)

Re2w K(w)] = Tok (f)eftcos ot dt

0—

(A.14a)
and

Im[27x K(w)] = —fk tyeftsinetdt. (A.14D)
Thus for =0 (l.e. w e L), and when k() is re-
stricted as a,bove, it is clear that k(¢) eft is re-

stricted in the same way and therefore that

Im[K (w)]{=}0 according as

«{E}0,
since contributions from successive cycles of sin af
to f ...dt have the same sign as «, and not all such
contributions can vanish. So the imaginary part
of eq. (A.13) (i.e. Im[K (w)]=0) can be satisfied
by w € L only for «=0. But then the real part of
eq. (A.13) requires

(A.15)

fk (t)ebtdt = 1/4 (A.16)
o

with § < 0. Now
[R(t)ertdt >0

clearly (cf. eq. (5)). Also with §=0 and k() as
above,

[E@)yefrdt < [R()dt =1,
0 0—
by eq. (5), with equality when f=0. So eq. (A.16)
can be satisfied for some w € L if and only if 1/4
lies between 0 and 1: i.e. when 4 = 1. Thus the

(A.17)
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steady state for ¢t >0 is stable if and only if A<C1
(in the units of eq. (A.6)), or in dimensional terms,
if and only if

A<2]Y. (A.18)

This is the result stated by Schelleng ([7], § IIK]);
our analysis shows that it holds good for a rather
general class of spike functions k(¢).

The analysis in Appendix B will show that
inequality (A.18) is sufficient for stability of the
steady state in the nonlinear case also, if 4 is
reinterpreted as the local slope of the friction curve.

Appendix B
Finite-amplitude local stability
with a nonlinear friction curve

The problem and notation are the same as in
Appendix A, except that we now assume a non-
linear friction curve f(») like that of Fig. 1. The
only restriction is the physically reasonable one
that the slope be everywhere finite: in particular
the negative slope of the steep “‘sticking’ portion
can be arbitrarily large in magnitude, but it is
not allowed to be infinite anywhere. In place of
eq. (A.2) we shall assume that, as time goes on,
vp approaches a constant value wyp such that the
sloping line f=wv—wyo (in the dimensionless units
of eq. (A.6)) has only one intersection (vq, fo) with
the friction curve f(v), and

f’(’vo) < 1.

We can then employ a standard result from control
theory to show that the steady state (v, fo) is
stable to disturbances of any magnitude, and
therefore must be approached as time goes on.
An immediate corollary is that, even when there
are three intersections (i.e. when vp e 1 of Fig. 5),
the outer two intersections are stable to any dis-
turbance whose peak excursion (in v) toward the
middle, unstable intersection does not reach as far
as that intersection. This .indicates how large
a disturbance is needed before there is any possibil-
ity of upsetting the persistence of sticking or
slipping as vy enters the “ambiguous” interval I,
and helps explain why this never happened in any
of the numerical computations mentioned in sec-
tion 3.

The permitted class of spike functions k() is
the same as before (see the statements preceding
eq. (A.14)). We shall make use of some of the
implied properties of the transform

K@) =K@ +ip)

when f=0 and «=0, starting with the facts,
obvious when we recall eqs. (A.14) and (A.17),
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that
27 K(0)=1, (B.1)
—1ZRe2nK(a)] =1 (B.2)

(this follows at once on setting f =10 in eq. (A.143a)
and using |cos at| £1). Defining H («) by

2nK(x) = ¢+ H{x), (B.3)

where ¢ is a real constant satisfying 0 <e<<1,
which is equal to the strength of any ‘residual
delta-function” which may contribute to k(f) at
t=0, we see from relation (B.2) that the real part
of H («) satisfies

—1—e¢=Re[H)]<1—e¢. (B.4)

Further, by applying Riemann’s lemma [25] to
the integral representation

[ k() e-iat at
o+

of H{e), and noting that %k is non-increasing and
fkdt finite, we deduce that there is a positive
constant C such that

| H(«)| < Cmin(1, 1) (B.5)

for all « = 0. Finally, it can be shown at some length
that

Im[27 K (x)] < — D min (e, 1) (B.6)

for all « =0, where D is a positive constant, for
any given k in the class under consideration. This
is a stronger version of the lower inequality of
relation (A.15) and. as with that inequalityv, is a
consequence of the hypothesis that k(¢) has a finite,
negative slope over some non-vanishing time inter-
val. The proof of inequality (B.6) is straightforward
and the details are omitted. Its essence is to note
first that, by hypothesis, &' (f) is less than some
negative constant for all ¢ in some finite interval J;
second, that the contribution to the integral (A.14b)
from each cycle of sin e is non-positive; and finally
that the ecycle or cycles which intersect J give
negative contributions, when « >0, whose magni-
tude is at least proportional to « for small o, and
to a1 for large a. (For large «, each cycle falling
within J contributes «~2 times a (negative) quan-
tity of order unity; and the number of such cycles
is proportional to o.)
We now transform eq. (6) by writing

vp — Vno = Avn, v — vy = Av, (B.7)
and

f(v) — fo=0Av — ¢(Av) (B.8)
where 0 is a number satisfying

0< <<t (B.9)
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We may choose 0 such that From eq. (B. 13)
0= p(Av)/Av =M, (B.10) |1 — 270 K(x)|2Re[G(0)] =
where M is some large but finite constant. This is = Re [QTK - 6| 2rK(0)[2= (B.17)
possible because of our assumptions that f' (vo) <1 = ¢ -+ Re[H ()] —
and that there is only one intersection (v, fo). — 0{e2 +2eRe[H ()] + | H(«)|2} (B.18)
Eq. (6) becomes
by eq. (B.3). Now
Av( _lec YAv(t — ¢y dt — (B.11a) e—0e220 and |1—20¢| <1,
since 0 < e<<1land 0<C < 1; and
—~flc Yo[Av{t — ¢)]dt" + Awvn(t), <
|Re[H («)]| < |H(«)| = Cmin(1,a1)
of which the Fourier transform is by relation (B.5). Therefore the expression (B.18)
V(w) =270 K(w) V(w) — =>0—Cmin(1,¢"1) — §C2min (1, «~2) =
— 27 K(w)P(w) + Vn(w) (B.11b) — SDmin(e, «~!) when o> xo,

where V, K, @ and V} denote the Fourier trans-
forms of Aw(t), k(t), p[Av(t)] and Awy(¢). This may
be rearranged as

Viw) = — G(w)D(w) + Un(w) (B.12)
where

G(w) =2nK(w)/{l —270K(w)}, (B.13)
and

Un=Vy/{l —270K}.
Now

Re[G(0)]=1/1—6)>0
by eq. (B.1) and relation (B.9); so

Re[G(«)] >0 (0= <) (B.14)

for some constant «g > 0, since G («) is a continuous
Function of «. Thus the Nyquist plot of G(«), i.
the locus of {Re[G («)], Im[G («)]} for « =0, hes in
the right half of the ¢ plane for 0 <a<Cwag. More-
over it lies below the real axis for all « >0, since
from eq. (B.13) and then from relation (B.6) we
have
|1 — 270 K () 2Im[G(o)] =

=Im2nK(«)] =0, (B.15)

with strict inequality unless « = 0 or oo.

If it can further be shown that the part of the
Nyquist plot for « =« lies on or to the right of
some straight line L of finite, positive slope through
the origin of the @ plane, then this together with
relations (B.10) and (B.15) will imply, by Popov’s
theorem ([26], eq. (10.19) and Fig. 104b —
a fortiori) that the system is stable in the sense
that

@ 1) = (
no matter how large the disturbance imposed by

the initial behaviour of Awy(t) before it reaches
zero.

(B.16)

'U(),fo) as t—>oo,

for some positive constant S,
=SIm[2r K (a)]

by relation (B.6),
=81 —-270K(«)|2Im[G(a)]

by eq. (B.15). Comparing this with the left-hand
side of eq. (B.17) we see, noting relations (B.2)
and (B.9), that

Re[G ()] = S Im[G («)] (B.19)

for «>ap, which shows that the Nyquist plot
for & > ap does indeed lie to the right of a straight
line L through the origin with slope equal to S-1;
and stability follows.

(Received January 14th 1978.)
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