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ldealised Models of a Bowed String
Summary

Several idealised models for the self-excited oscilla-
tion of a bowed string are studied and compared:
Raman's and Friedlander’s models, in which bound-
ary reflections are described by frequency-indepen-
dent reflection coefficients, and the rounded-corner
models in which the process of reflection is character-
ised by two “reflection functions”. The rich set of
possible periodic solutions is explained, and compu-
tutional methods are given for calculating them. Im-
plications for the limits of allowed normal force be-
tween bow and string are explored. Finally, the
limiting processes are studied, by which the predic-
tions of the Raman model and the rounded-corner
models might be expected to tend towards those of
the Friedlander model. Both of these limits show un-
expected behaviour, an understanding of which is
vital to any modelling exercise making use of the
Raman and Friedlander models.

Idealisierte Modelle einer gestrichenen Saite
Zusammenfassung

Hs werden verschiedene idealisierte Modelle fiir die selbst-
erregte Schwingung einer angestrichenen Saite unter-
sucht und verglichen: Die Modelle von Raman und Fried-
lander, bei denen die Reflexionen von den Saitenenden
durch frequenzunabhdngige Reflexionskoeffizienten be-
schriecben werden, und die Modelle der ,,abgerundeten
Ecken®, bei denen der ReflexionsprozeB durch zwei Refle-
xionsfunktionen gekennzeichnet wird. Der grofie Satz

moglicher periodischer Lésungen wird erkldrt und es
werden Berechnungsmethoden fiir sie angegeben. AuBer-
dem werden Folgerungen fiir die Grenzen der zulédssigen
Normalkraft zwischen Bogen und Saite untersucht.
SchlieBlich werden die Grenzprozesse studiert, aufgrund
derer die Vorhersagen des Raman-Modells und des Mo-
dells der abgerundeten Ecken in die des Friedlander-Mo-
dells iibergehen konnten. Beide derartige Grenzen zeigen
ein unerwartetes Verhalten, dessen Verstéindnis von grofler
Bedeutung fiir jede Modelluntersuchung auf der Grund-
lage des Raman- und Friediander-Modells ist.

Modeles idéalisés d’une corde frottée
Sommaire

Nous procédons 4 une analyse comparée de plusieurs
modeéles idéalisés du mécanisme d’auto-excitation des vi-
brations d’une corde frottée: les modéles de Raman et de
Friedlander, dans lesquels les réflexions aux extrémités
sont représentées par des coefficients de réflexion indépen-
dants de la fréquence, et les modéles «a angles arrondis»
ot les mécanismes de réflexion sont caractérisés par deux
«fonctions de réflexion». On explique le riche éventail des
solutions périodiques possibles, et 'on indique des meé-
thodes pour leur calcul. On examine les conséquences sur
les limites acceptables de la force normale de 'archet sur
la corde. Finalement on étudie les cas limites ou 'on peut
prévoir que les résultats du modéle de Raman et ceux des
modéles & angles arrondis peuvent tendre vers les résul-
tats du modéle de Friedlander. On découvre un compor-
tement inattendu de ces cas limites, dont la compréhen-
sion est fondamentale pour l'utilisation des modélisations
de Raman et de Friedlander.

{. Introduction

If asked to consider the behaviour of a bowed string,
most applied mathematicians find one particular math-
ematical model immediately plausible. An ideal, per-
fectly flexible, stretched string is rigidly anchored at
both ends. Excitation by bowing is modelled as a force
applied at a single point of the string, the value of the
force depending on the motion of the string at that
point according to some non-linear relation represent-
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ing stick-slip friction. This model has been studied in
the past, especially by Friedlander [1] and Keller [2],
and we shall refer to it as the “Friedlander model”. A
close relative of this model, although actually earlier,
is due to Raman [3]. This differs from Friedlander’s
model in that the string terminations, instead of being
rigid, have reflection coefficients with a magnitude less
than unity, representing some energy dissipation.
(Physically, it can be regarded as modelling string
terminations which are pure mechanical resistances,
or semi-infinite ideal strings whose wave impedances
differ from that of the finite length of “actual” string.)

Although more sophisticated and accurate models
have been available for some time now [4], the Fried-
lander and Raman models have the virtue of (appar-
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ent) simplicity, and they are still often invoked when
explanations are sought for bowed-string phenomena.
In this paper we explore the strengths and weaknesses
of these models, to show when they give a useful guide
to real bowed-string behaviour and when they can be
seriously misleading. We will consider Friedlander’s
model as a limiting case of Raman’s model, and also
of the class of “rounded-corner models”, in which a
much wider class of wave reflection, dispersion and
dissipation behaviour may be included [4-6]. In both
cases we will find that the limit process is not straight-
forward, so that solutions to the Friedlander model do
not generally give good approximations to the predic-
tions of these other models, even close to the relevant
limit.

In order to focus on the essential relations between
these models, other aspects of the system will be ap-
proximated in the simplest possible way. In particular,
the friction force will be modelled as depending only
on the instantaneous string velocity at the bowed
point. We will take a very simple piecewise-linear rela-
tion, illustrated as the heavy curve in Fig. 1. When the
string has the same velocity v, as that of the “bow”,
there is sticking friction and the force may take any
value between certain limits. This is represented by the
vertical portion of the curve. When there is relative
sliding, the friction force f is assumed to vary accord-
ing to

flfh=kv+c 1)

where v is the string velocity, f, the normal force
between bow and string, and k and ¢ are constants.
For sliding speeds close to the bow speed, the straight

Fig. 1. The heavy curve shows a piecewise-linear relation
between friction force and string velocity of the kind assuried
throughout this paper. The sloping line and ringed intersec-
tion illustrate Friedlander’s graphical procedure for finding
the force and velocity at a given time step. The shaded region
shows the range in which frictional hysteresis operates.

line (1) is joined to the maximum of the sticking line
by another straight line. In fact the form of this por-
tion of the curve will not matter, as will be seen short-
ly. For sliding at speeds faster than »,, the curve would
be reproduced antisymmetrically, as shown in Fig. 1,
but this does not occur in the usual motion of a bowed
string and will not be considered further. This model
does not represent real frictional behaviour very accu-
rately [7], but it is a simple version of the most com-
monly-used model, and is well suited to the present
investigation.

Friedlander first considered the solution which rep-
resents a state of steady sliding, in which the string
does not vibrate but is simply held in a displaced
position by a steady friction force. He argued that this
solution must be unstable since it is never observed in
a real violin string, and he showed that, within his
model, a necessary and sufficient condition for this
instability is that

k>0 @)

in eq. (1). This condition, described by Schelleng [8] as
“negative resistance”, is necessary for self-excited os-
cillation to occur in any reasonable model on the
simple friction-curve idealisation.

Friedlander’s model has a periodic solution which
corresponds quite well to the usual motion of a bowed
string (first described by Helmholtz [9]), but he showed
that eq. (2) is a sufficient condition for this and all
other periodic solutions to be unstable, a conclusion
which is not in good agreement with the common
experience of violin playing. The nature of Friedlan-
der’s instability of the “Helmholtz motion” has been
shown to take the form of subharmonic perturbations
which grow exponentially [10]. His model lacks any
mechanism of energy dissipation, whereas in a more
realistic model subharmonic growth can be balanced
by dissipation to give stable periodic motion. A more
detailed discussion of this instability, and other ques-
tions relating to the stability of bowed-string motion,
is given in a companion paper to this [11]. Here, we
concentrate on the nature of the solutions to the differ-
ent models, and their behaviour in various limiting
cases.

2. Raman’s model

2.1, Formulation and formal solutions

Raman’s and Friedlander’s models are sufficiently
similar that it is convenient to develop them together.
Suppose the string is of length L, divided into parts of
lengths a and b by the bowed point. The reflection
coefficients at the two ends of the string will be as-
sumed to be the same, with value — A. Since for any
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reasonable model of a violin string boundary reflec-
tion will be almost complete, it is sometimes conve-
nient to write 1 = 1 — ¢, where ¢ will be a small posi-

tive number. In Friedlander’s model, ¢ =0. The

velocity response at time ¢ at the bowed point is given
straightforwardly in terms of the instantaneous force
S () and a sum of multiply-reflected contributions
arising from forces applied by the bow at earlier times:

v(t) = (Yo/2) {f ®— go AAfE—2(@+jL)e) (3

+Af(t=2(b+jL)c)—-222f(t—2(+ 1)L/c)]}

where Y, is the characteristic admittance of the string,
equal to (Tm)~ Y2 where T is the string tension and
m its mass per unit length, and c is the wave speed
/ T/m. 1t is convenient henceforth to use units in
which Y, = 2.

If the bowed point is a rational subdivision of the
string, eq. (3) reduces to a difference equation. Provided
the initial conditions are consistent with the assump-
tion, both v(f) and f () are piecewise constant func-
tions. Suppose a:b = p:q where p and g are co-prime
integers with p < g for definiteness. Let

A=2L/cN
where N = p + q. Then eq. (3) may be written

U= fo— 'Zo }'Zj[l.f;l-—p—jN
i=

+/lf;|—q-—jN_2j'2f;l—(j+1)N] 4
where

v,=v(md) and f,=f(n4).

By simple manipulation, eq. (4) may be cast in the
closed form

Jam A faep= A fue g ¥ R foy=0,— R0,y (5)

which, for the case A = 1, is the form used by Friedlan-
der [1].

Eq. (5) gives a basis for a simple time-stepping cal-
culation of transient response of the model. At a given
time n, all terms except v, and f, are known from the
past history of the motion, and these quantities enter
in a simple linear manner which may be written in the
form

U = Jo + U ()

where v, is known. The unknown quantities v, and f,
may thus be found by solving eq. (6) simultaneously
with the friction relation. This is conveniently visu-
alised as the graphical construction shown in Fig. 1:
the intersection of the straight line (6) with the friction
curve is found, and its x and y coordinates are v, and
J, respectively. It is clear that an ambiguity of intersec-
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Fig. 2. Simulated transient solutions to a) Raman’s model
and b) Friedlander’s model, from quiescent initial conditions
at the left-hand side of the plots. Parameters used were: p = 2,
q=09, f, =7, v, =1,k =0.005, c = 0.3, coefficient of sticking
friction 0.8, maximum velocity on sliding portion of friction
curve 0.8. For case a), the boundary reflection coefficients
were both 0.99. In both cases, the waveform of string velocity
at the bowed point is plotted.

tions can arise if the line falls in the area shown shaded
in the figure, and it has been shown that the physically
correct resolution of this ambiguity involves a hys-
teresis cycle [12], as one might have guessed. The ap-
propriate intersection to choose is whichever of the
two outer ones corresponds to the state (sticking or
slipping) of the previous time step. The middle inter-
section is never to be used, so that the precise assumed
form for the friction curve in this region is immaterial.
The limits of this shaded region will play a role when
we seek periodic solutions to the model: they impose
self-consistency constraints on allowable solutions.
Little progress can be made analytically in the study
of transient solutions, even with the very simple fric-
tion law assumed here. It is, however, easy to compute
examples, and two are shown in Fig. 2. Both start with
the string at rest at time zero. The same values p = 2,
q = 9 are used in both cases, and the only difference is
in the assumed value of A. Fig. 2a shows Raman’s
model with 1 = 0.99, while Fig, 2b shows Friedlander’s
model, with A = 1. The two models give similar results
initially, but diverge after a short time. Friedlander’s
model shows no pattern (since all periodic solutions
are unstable), but Raman’s model eventually settles
towards a periodic solution which approximates the
Helmholtz motion. This has the period of the free
motion of the string, and within each cycle it has one
episode of slipping for p time steps and one of sticking
for g time steps. This pattern is just starting to form by
the end of the time range plotted, but it has a strong
perturbation which is approximately a fifth subhar-
monic [10, 11). This perturbation dies down slowly
over the next 200 period-lengths or so. Neither tran-
sient bears very much resemblance to typical tran-
sients for normal playing of a real violin string, but
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that is not an issue to be examined in this paper. A
more systematic use of simulation to study the tran-
sient behaviour of bowed-string models has been dis-
cussed elsewhere [6].

We learn more about the relation between Friedlan-
der’s and Raman’s models by looking at possible peri-
odic solutions. Consider first the simplest case, in
which the period is the natural period of free vibration
of the string, and there is one slipping episode per
cycle. We need not assume that it is a Helmholtz mo-
tion, with precisely p slipping points — we assume
some number which we denote r. The set of N simul-
taneous equations which follow from eq. (5) together
with the known relations between f, and v, during
sticking and slipping may be written '

—1
—1.

14 A2
1+ A%,

-4

-4 .

— A

where v is a vector of r unknown velocities (during
slipping), f a vector of N — r unknown forces (during
sticking), and », and ¢ are vectors filled with the cor-
responding scalar constants, of lengths N —r and r
respectively. The diagonal lines of terms — 4 start in
columns (p + 1) and (g + 1) of the first row, and the
matrix is symmetric. All entries not otherwise indi-
cated are zero.

The matrix may now be partitioned to match the
partition of the vectors:

(th) N ((A} l g) (fb [k{; T d)'

A formal solution follows directly, by elementary ma-
nipulation. It is convenient to treat separately the case
k = 0 first: this has solution

=47y~ f,Bo)

®)

©
and

vo=CA tv,+ f,(D—CA" ! B)c. (10)
Now the solution to the general case may be written

v=[I— fok(D—CA ' B)] 'v, (11)
and

f=A[v,— fu Blkv+c)]. (12)

Note that the form of the matrix 4 guarantees that it
is always non-singular, and at least for small enough
values of k, the matrix in square brackets in eq. (11) is
clearly non-singular since it is diagonal-dominant.

Ly

Essentially the same procedure may be applied to
obtain formal solutions for a much wider class of peri-
odic motions. One may choose a period, equal to the
natural period or not, and go through one cycle desig-
nating each time step to be either sticking or slipping
(provided there is at least one of each). The set of
simultaneous equations corresponding to this choice
may be written down, and by permuting rows and
columns suitably, all the “sticking” equations may be
collected before all the “slipping” ones. The result dif-
fers in form from eq. (7) only in the precise content of
the matrix, but the procedure of partitioning and for-
mal solution is not influenced at all, and a candidate
periodic solution can be produced which corresponds

— 4.

g f
T 2 (fb[k”‘l‘c]) )

‘.1+12

to the chosen period, and sequence of sticking and
slipping intervals. Thus we have potentially a very rich
class of periodic solutions.

However, some of these may not satisfy the self-con-
sistency conditions to make them true solutions to the
problem as posed. We can list the required conditions
as follows:

(a) no slipping velocity shall be greater than the limit
for the assumed linear form in Fig. 1;

(b) no sticking force shall be higher than the maxi-
mum allowed for sticking friction;

(¢) no sticking force shall be more negative than the
limit of sticking friction in the reverse direction;

(d) any point which falls within the shaded region of
Fig. 1 must obey the hysteresis rule, so that it must
be in the same state (sticking or slipping) as the
most recent preceding point which lies outside the
shaded region.

Many of these conditions, when applied to a partic-
ular solution, can be cast in the form of limits on the
allowed values of the normal bow force f,. The be-
haviour of the maximum and minimum bow forces for
the Helmholtz motion has been discussed by various
previous authors [3, 13, 14 §4.6], and similar discus-
sions can be applied to the other possible periodic
oscillation regimes. We return to this issue in Section
2.3, For now, we simply give one example of the type
of solutions which arise from the procedure just out-
lined. We consider the case p=3, gq=4, f,=1,
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k=0.001, ¢=03, 41=099, limiting coefficient of
sticking friction equal to 0.8, and a maximum allowed
velocity on the linear “slipping” segment of Fig. 1
equal to 0.8 v,. Assuming the natural period of the
string, there are 16 essentially different seven-sample
periodic solutions, corresponding to the different pos-
sible sequences of sticking and slipping. For the
parameters just specified, all 16 of these solutions sat-
isfy the conditions (a)—(d) listed above, so they are all
indeed solutions to the complete problem. The set of
velocity waveforms is shown in Fig. 3, two cycles be-
ing plotted in each case.

2.2. Friedlanders’ model as a limiting case

We next investigate limiting cases of Raman’s model.
There are two parameters in the problem which it is
reasonable to regard as small: k and e. The limit in
which both of these parameters tend to zero is not well
behaved. In particular, quite different answers are
found in the two.cases in which one is set to zero, then
the other allowed to tend to zero afterwards. It is
sufficient to discuss the case represented in eq. (7), of a
single-slip-per-cycle solution with the natural period

f T ﬂ

e o R Il
aTnlnTs] ] hnpoonn naanar
[ B
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Fig. 3. The 16 different periodic solutions to Raman’s model,
using values p=3,g=4, f,=1, v,=1, k=0.001, c=0.3,
A =0.99, coefficient of sticking friction 0.8, and maximum
velocity on sliding portion of friction eurve 0.8. Two cycles of
velocity waveform are plotted in each case, and the vertical
scale is the same throughout. The case at the top right is the
“Helmbholtz” solution for these parameter values.

of the string. The simpler of the two cases is that
discussed by Friedlander. If we set & = 0, then it is
clear that the force must be constant throughout the
cycle. If it were not, it would have fluctuations at
resonant frequencies of the string, and with no mech-
anism of energy dissipation a steady state is not possi-
ble, since resonant growth of the string responsé must
occur. However if force is constant during slipping
and k is non-zero, then the string velocity during slip-
ping must also be constant, to be compatible with the
relation (1) (provided k = 0). The constant value may
be deduced from the fact that the velocity waveform
must integrate to zero over one cycle in this model
(although when ¢ = 0 it integrates to a non-zero value,
which is small if ¢ is small). The result remains un-
changed throughout the limiting process k — 0. For
the case r = p, it is the ideal Helmholtz motion.

If instead we set k=0 and then let ¢ — 0, a very
different picture is found. Note first the curious fact,
proved in the Appendix, that the set of equations

Mx=1 (13)
has solutions x entirely in integers, where 1 is a vector
of 1’s and M is a symmetric matrix formed by deleting
one or more rows and columns from the right and
bottom of the matrix

1 —1/2 ~1/2
1. ~1/2 '
K ' 12
-1/2 )
T 21,2
—-1/2, -
.Y} 12 "1

(where the pattern of non-zero elements matches
the matrix of eq.(7)). This matrix has the form of
the matrix A in the limit ¢ — 0, apart from a factor
2/(1 — A2). The matrix C in that limit contains only
zeros and ones, multiplied by a factor 1/(1 — A2) which
cancels when the product C4 ™! is formed. It follows
that the first term of the solution v, from eq. (10)
consists of integer multiples of v,/2. The second term,
involving ¢, turns out on close inspection to be O (g),
so that it does not contribute in the limit ¢ — 0. Thus
the waveform of velocity during slipping, for any solu-
tion in this class, consists quite unexpectedly of quan-
tised values, in a mixture which adjusts to satisfy the
condition that the integrated velocity over a cycle is
zero. This is quite different from the constant slipping
velocity given by taking the limits in the other order.

To see more clearly what is happening, we treat a
particular example in detail. Consider the case p =3,
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g =4, r = 3. The explicit form of the matrix of eq. (7) is

1+4% 0 0 -1 =4 0 0

0 1442 0 0 -4 —i O
e o0 0 i
—| -4 0 0 e 0 0
—A =4 0 0 1+ 0 0
0 -4 —A 0 0 1442 0

0 0 =4 —i 0 0 1+

Carrying through the manipulations yields the k = 0 solution

(1—/12)(1+/1+,12)v ,1(1+A+12)fc\
1422424 P A
(1 =A%) 22 fu +2ev,
b= e e =] #*e | o (14)
o~ (1—12)v+ 22 fe N AT
1+22 " 14227 fo + 280,
(1—/12)(1+,1+,12)U +A(1+A+,{2)fc
1+ A2 424 R N LS
and
[(1+,1+/12)+ 1 ]v A+ A+ 1H1 =25 fie 5
- 5
T+24+2* 1422 A+HA+AHA + 24297 —Su ot Sefe
24 1-22
Uy = _1+,120"+1+/12be = —v,+efye |4 O,
3 5
141443 1 14+ 14+ -29) — 5+ —efpe
_A ( 3 4+ 5 vb+ ( g ( : 4be 2 4 b
14+224+2% 142 A+ DA+ A+ 22+ 219 (15)

The quantised form of the elements of v, in the limit ¢ — 0 is clear here, as are the facts that the force tends
towards a constant value and the integral over a period of the velocity tends to zero in the same limit (recalling
that there are four steps of sticking here, with velocity v,).

To obtain the solution for finite k, we see from eq. (11) that the velocity vector is modified by the matrix
[I— f,k(D— CA~ ! B)]~!, which for this example is equal to

fuk(1 =219 Sk 22 Sk 2 -t
T (1-2%H(1 =29 (-4 (11— 29
fok 42 | Sk 44 fok 22
(1 — 1% -4 1 — 49
Sk A2 Sk fk(—21)
(1 —19 (1—2% (1~ 241~ 29

In the limit in which both k and ¢ are small, it is plain that this matrix depends to leading order only on the
combination

w=bk, (16)

involving the ratio of the two small quantities. It is the appearance of this ratio which accounts for the
unexpected limiting behaviour noted above. The two cases discussed correspond to values of zero and infinity
for «, and we can now investigate what happens for intermediate values, at least for this particular example.
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The approximate value of the matrix is 17
1 —110/12 + 7o*/48 / /6 + 7 o?/48
1—50/12 o/d a6\t 1 1—7a/12 e 1~ Ta/12
o/4 1—0/2 o/4 = m — of4 1—of4 — /4
/6 a4  1—5a/12 /6 + 7 a*/48 w4 1—110/12 + 7a%/48
1—70/12 1—-70/12

As a — o0, it is easy to see that this matrix tends
towards

13 1/3 1/3
13 1/3 1/3
13 1/3 13

so that the vector v, is simply averaged to produce the
constant slipping velocity expected for that case
(I'riedlander’s case).

To obtain an approximation to the general expres-
sion for v, it is good enough to use the leading-order
approximation vy~ [— 3v,/2, — v,, — 3v,/2]' to ob-
tain

«—3/2
3o/4 — 1
oa—1
PR — m Uy (18)
o —3/2
Ja/d —1

This solution shows the expected behaviour for very
lnrge and very small o, but the behaviour for interme-
dinte values is by no means a simple interpolation
between these two limits. Indeed, for a range of «
nround 4/3 the solution fails to satisfy one of the self-
consistency conditions: one or other of the three slip-
ping velocities exceeds the maximum allowed on the
slipping portion of the friction curve. Thus not even
the solution to the Raman model which approximates
the Helmholtz motion can be guaranteed to satisfy all
conditions of the problem, under (apparently quite
realistic) conditions when k and ¢ are both small.

2.3. Bow force limits

The sensitivity of solutions just revealed, together with
the unrealistic nature of starting transients seen in
Fig. 2, are both good reasons for scepticism about the
suitability of Raman’s or Friedlander’s model to ex-
plain observed phenomena in bowed strings. How-
ever, Raman showed that many of the periodic solu-
tions to these models do correspond to regimes which
have been observed [3, 15], so that provided caution
is exercised the models can clarify aspects of the be-
haviour of these regimes. One area of enquiry in which
Raman’s model can contribute something useful is in

the study of bow-force limits. The fact that any given
note can only be produced with a bow force lying
between certain limits is familiar to every violinist, and
variations of the maximum and minimum bow forces
between instruments, or between notes on one instru-
ment, may contribute to the sense that some are “easier
to play” than others (5, 6].

It is obviously of interest to know what governs
these force limits, and how they are influenced by the
various parameters of the problem. The best-known
investigation of this issue is that of Schelleng [13], who
summarised his results in a diagram of the force limits
for the Helmholtz motion plotted against bow posi-
tion on the string, (This position is usually specified by
the fractional distance of the bow from the violin
bridge, designated § and equal to p/(p + g) in terms of
our treatment of Raman’s model.) Of course, Raman’s
model contains by no means all the physical effects
which might influence bow-force limits in practice, but
nevertheless it is of interest to see what this model
predicts for those limits since it is at present the only
model which is understood well enough to give defi-
nite predictions without recourse to exhaustive simu-
lation.

As was remarked earlier, the various self-consisten-
cy conditions which must be satisfied by a candidate
periodic solution can be cast in the form of limits on
bow force. By far the easiest case to study is that with
k =0, leading to egs. (9) and (10). The dependence on
foisexplicit in a very simple way here. In any case, this
is the more relevant of the simple limits, in which «
either goes to zero or infinity: it turns out that the
requirement of stability sets an upper limit on « for
each solution [11], with a value generally of the order
of unity. (For the example analysed in detail in Sec-
tion 2.2, the stability threshold is « = 4/3.) Thus a re-
quirement to be safely below this limit excludes most
of the strong variation with «, and the o = 0 solution
may be supposed to give a reasonable first approxima-
tion.

When all the conditions listed near the end of sec-
tion 2.1 are turned into limits on bow force, it transpires
that the maximum and minimum bow forces are al-
most invariably determined by the two conditions
which Schelleng used. Minimum bow force occurs
when the maximum of the force f during sticking just
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exceeds the limit of friction, so that another slip must
occur during the interval within which sticking was
assumed in the analysis. Maximum bow force occurs
when the left-hand boundary of the shaded region in
Fig. 1 crosses the friction curve at the value of the first
slipping velocity, v, , so that a transition from sticking
to slipping cannot occur at the assumed time (by the
hysteresis rule stated earlier). It is a trivial matter to
compute these force limits for any given solution, and
we illustrate with some results for the family of single-
slip~per-cycle solutions described by eq. (7). The re-
sults will all be presented in “Schelleng diagrams”, for
comparison with his work.

First, we show the behaviour of the “Helmholtz”
solutions, having r = p. When results for all values
g £ 50, p < g are combined, the force limits map out
the two curves plotted in Fig. 4. In broad terms, both
limits follow the trend shown by Schelleng. He found
(using a small-$ approximation) that minimum force
varies as f~ 2 while maximum force varies as 7%, so
that on the log-log plot they appear as straight lines
with slopes — 2 and — 1 respectively. In detail, our
results depart from such straight lines, and an obvious
regularity in the behaviour is revealed: both limits
form “staircases”, in which the values remain ¢onstant
in each interval 1/n>f>1/n+1) (n=2,3,4,...).
This constancy of value is exact to the precision of the
computations, and probably reflects a result which
could be explored analytically, but that possibility is
pursued no further here. The end points of the ranges,
where f=1/n, behave differently for the two force

1000
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Fig. 4. Maximum and minimum bow force limits for the
Helmholtz solution to the Raman model, plotted against
on log-log axes in a “Schelleng diagram”. Points are plotted
for all values ¢=2,...,50, p=1,...,q — 1. Other parame-
ters are: v, = 1, k = 0, ¢ = 0.3, 1 = 0.99, coefficient of sticking
friction 0.8, and maximum velocity on sliding portion of
friction curve 0.8.
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Fig. 5. a) Minimum bow force limits and b) maximum bow
force limits plotted against § for the same range of parame-
ters as in Fig. 4, for three cases of slipping time r: lower curve
r=2p; middle curve r=p (as in Fig. 4), upper curve
r = nearest integer above p/2. Scales are the same as in Fig. 4.

limits. For the maximum bow force, the 1/n points
give values intermediate between the constant values
on either side, while for minimum force, the 1/n points
agree with the constant value to the right of each
point.

When the computations are carried out with values
of r different from p, quite different behaviour is found
for the cases r < p and r > p. It is hard to convey the
behaviour for the full range of r, so we show two
representative cases. Using the same range of p and g
as above, solutions and force limits were calculated for
r equal to 2 p and to the nearest integer above p/2. The
three minimum force curves, including the one shown
in Fig. 4, are plotted in Fig. 5a, and the three corre-
sponding maximum force curves are plotted in
Fig. 5b. Both force limits are found to increase
monotonically as r decreases, for all solutions, so that
the r=2p curves appear lowest and the r= p/2
highest.
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Again, striking regularities are revealed which
might point towards interesting analytic results. The
results for r =2 p are generally similar to those for
r = p, “staircases”. In the case of minimum bow force,
the values are all identical to those for r = p except
that each is shifted left into the next interval. The
results for r =~ p/2 are quite different. Some kind of
quantisation of values is still evident, but with a more
complicated pattern. Both curves show an increase
around each 1/n point, particularly strong in the case
of minimum bow force. Note that for the cases with
p =1, the integer above p/2 is again 1, so that those
points duplicate the r = p results. For minimum force
this produces vertical lines at # = 1/n, since the other
points giving the same f (2:2n, 3:3 n etc.) give a much
higher answer. For maximum force, in contrast, all
vombinations giving the same f give the same force
limit, and notches appear in the curve around the 1/n
points.

Finally, notice that for the r ~ p/2 curves, there is an
interval of B around each 1/n point for which the
minimum force is higher than the maximum force.
‘This means that the corresponding “solutions” are not
self-consistent. Taking r as an even smaller fraction of
p would make these regions wider. This may have
relevance to a point raised recently by Weinreich and
Causse [16]: they point out that smaller values of r
may tend to be favoured on grounds of stability. This
raises an obvious question of why, in practice, the
Helmholtz motion is usually obtained in preference to
some oscillation regime with a shorter slipping period.
If such regimes are not in fact possible for a significant
fraction of the possible values of B, as suggested by
Fig. S, it is perhaps not very surprising that they are
rarely produced in practice.

3. Rounded-corner models

3.1, lntegral equation and kernel functions

We now turn to consider a very different class of
bowed-string models, from which the Raman and
Friedlander models would be expected to appear as
limiting cases. These models retain the assumption of
point bowing and the friction-curve approximation,
but allow a much more general class of (linear) be-
haviour to the string and its terminations. The theory
has been developed in detail elsewhere [4, 5, 12]. The
governing equation is now an integral equation

b= | gl—9f @) (19)

where f(v) is the friction function, and g(z) is the
velocity response at the bowed point to a force im-

pulse applied there. This impulse response function
can be written in terms of the two reflection functions
hy(t) and h,(t) which characterise the reflection be-
haviour of the sections of string to the left and right of
the bowed point respectively [4, 5]:

Y,
g(t)= [0 (0) + hy () + hy () + 2hy x by
4+ hyxhyxh; +hyxh, xh, +..]] (20)

where * denotes the operation of convolution and ¥,
is the characteristic admittance of the string, as before.
Again, it is convenient to choose units such that
Y, =2. If both reflection functions are unit delta func-
tions, this becomes Friedlander’s model, while if they
are delta functions with amplitudes less than unity it
is Raman’s model.

We will seek periodic solutions to eq.(19). For a
solution with period 7, the range of integration in
¢q. (19) may be reduced to a single period

v(t) = gk(t — 1) f(wkE)de 21)

where the kernel function k(z) is a “folded-up” version
of g(2)
k)= X gt—nT), @=t=T). (22)

(Since g (t) is a cauvsal function, the terms correspond-
ing to positive values of n contribute nothing to k(t),
but this form is the most convenient.)

In the frequency domain, eq. (20) may be written

_1+H,+H,+HH,
h 1—H,H,

G(w) (23)
where G, H, and H, denote the Fourier transforms of
the corresponding functions denoted by lower-case
letters [S]. To express eq. (22) in the frequency domain,
we may take advantage of the Poisson summation
formula: 24)

O 0 2 2 1
Eae-nn-1 2 o e (P

so that the Fourier series coefficients of k (£} are simply
values of G () sampled at w =2nn/T.

We will concentrate on the particular case in which
both reflection functions are significantly non-zero
only for a time interval short compared with the peri-
od of the motion. Aspects of the behaviour of such
“narrow reflection functions” have been discussed pre-
viously [5, 6]. The aim here is to investigate the limit
in which the widths of both functions tend to zero, to
see whether the solutions then approach those of the
Raman model discussed earlier. The first stage is to
examine the behaviour of the kernel function k(f) in
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this limit. Narrowness of the reflection functions cor-
responds to slow variation of the appropriate sampled
values of G at low values of n. We may thus find
leading-order approximations for the Fourier coeffi-
cients of k(t) by expanding H, (w) and H, () as Tay-
lor series, then using egs. (23) and (24).

It turns out that we need expansions correct to
O (w?) to deal with the various cases of interest. Define
quantities 4,, t; and 4,, following notation used ear-
lier and in reference [5], via

do=— | hy@dr, (25)

T ¢—t)h ()de=0 (26)
and

243 = — [ (t—t)h, @0)dt. 27)

Corresponding quantities 4,, £, and A, are similarly

defined from h, (t). Now it is readily shown that
H ()= —Lexp(—iot) + 0?42+ 0(w?, (28)

with a corresponding expression for H, (w). Substitut-
ing into eq. (23) thus yields

to leading order. This expression is valid for values of
n such that (2 n/T)? (42 + 42) < 1. If it is used for all
n, it is easy to see that it leads to a kernel k(¢) whose
shape is the second integral of that of Fig. 6 a, plotted
in Fig. 6b. The Fourier series converges rapidly, so
this piecewise-linear kernel will give an approxima-
tion to the true one except for two factors. First, at
t =0 the impulse response function (2) has a delta
function contribution, which must of course appear in
k (¢). Second, and probably less important, if the reflec-
tion functions are smooth, then k(t) cannot actually
have slope discontinuities at the points T8, T(1 — f)
as plotted in Fig. 6b, and on a small scale the corners
can be no sharper than the functions k, (1), h, (¢).
This “bucket-shaped” kernel, with the initial delta
function restored, offers some hope of being a canon-
ical case for periodic motion with the natural period
of the string and narrow reflection functions: the de-
tailed shapes of the reflection functions do not affect it,
so that solutions obtained using it might apply to all
models within the class. It is interesting that no round-
ing as such appears in the expression: the finite widths
of the reflection functions appear only via an overall

G(w)~

Three different cases of the behaviour of this expres-
sion may be distinguished, depending on the values of
the various parameters. We are interested in the sam-
pled values

2nn
k=Gl —
i <T>

where the period T might be the “natural” period
t, + £, [5] or something different. For the Raman-
model case with 4, =0, 4, = 0 and using the natural
period, we obtain

(30)

k (142,42 (1)

N 1
"= A,
-exp(—2mint,/T)— A, exp(—2mint,/T)}.

This expression is in fact exact for this particular case.
Using egs. (22) and (24), it gives a kernel function k(¢)
consisting of three delta functions, as illustrated in
Fig. 6a. Eq. (21) then corresponds directly to eq. (5),
for the case in which both f, and v, are periodic with
period N.

For the rounded-corner case with the natural peri-
od and satisfying the constraint 1, = 1, =1, eq. (29)
gives

2—exp(—2rint,/T)—exp(—~2nint,/T)
@nn/T)* (43 +43)

(32)

k,~

1—A exp(—iwt)—Arexp(—iwt,)+ A A exp(—iw(t + 1))+ o?[A43(1 — i)+ 42(1—4,)]
1214 exp (—io(t; + )+ @* [A, 47+ 4, 43] ’

(29)

scaling factor. As the widths of the reflection functions
tend to zero, we certainly do not obtain the same
answer as the limit of the Raman-model kernel of
Fig. 6aas A, 4, — 1. Both kernels show behaviour in
which a scale factor tends to infinity, but the shapes
which are scaled are very different. There is no obvi-
ous reason, then, to expect the solutions to be the
same in that limit.

Before examining such solutions, we consider one
more limiting case of eq. (29). So far, we have used
only the natural period of the string, but, as has been
explained previously [12], when we allow for hysteresis
in the friction curve the Helmholtz motion, and other
periodic regimes, exhibit periods somewhat longer
than this (the “flattening effect”). It is thus of interest
to see what happens to the kernel function when the
period differs stightly from ¢, +¢,. If the period is
lengthened by a factor (1 + #), then to leading order

_2—exp(—2mint,/T)—exp(=2nint,/T)

k
2wing

(33)

n

where we retain the assumption 4, =1, =1. This
is valid provided (2nn/T)*(4% + 42) < |27wny| < 1.
Again, it is easy to see the kernel shape which arises if
we apply this result for all n: it is the intermediate case
between Figs. 6a and b, plotted in Fig. 6¢ for positive
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Fig. 6. Sketches of the three idealised kernel shapes & (¢) dis-
cussed in the text: a) Raman’s model; b) the “bucket” kernel,
urising from narrow reflection functions at the natural peri-
ad; ¢) kernel arising from narrow reflection functions with a
petiod longer than the natural period (for a shorter period,
the picture is inverted).

# (it is inverted for negative #). This time the overall
seitle factor contains #, so that as the pitch shift in-
creases the amplitude of the kernel becomes smaller.
The same remarks apply to this kernel as to that of
Iiig. 6 b: it will be inaccurate near the sharp corners,
and it [acks the initial delta function, but otherwise it
is n candidate for the canonical problem for the class
ol periodic motions with narrow reflection functions
and frictional hysteresis.

It is of interest to compare the approximate kernel
shipes of Fig. 6 with examples calculated from specific
models with narrow reflection functions. The closest
match is obtained if we take a model with time-sym-
mietric reflection functions. Such models are not phys-
jenlly realistic, but they make a useful test case for
studying such effects as flattening due to frictional
hysteresis [12]. Fig. 7a shows three kernels corre-
sponding to a model with identical Gaussian func-
tions for the two reflections, using the natural period,
and periods 1% less and 1% greater. The shapes cor-
respond very obviously to those of Fig. 6b and c. The
kernels were caleulated using a 128-point fast Fourier
transform, and the vertical axis scale shows values
corresponding to integration of the function over each
of the 128 discrete time intervals making up a period:
this is done in preparation for solution of the discre-

Fig. 7. Kernel functions k(t) calculated for = 0.11 a) with
reflection functions which are identical Gaussian functions
(apart from the different time delays), having a width such
that the second moment matches that for Cremer’s model;
and b) from Cremer’s model. In both cases, the solid curve
corresponds to the natural period of the system, the dotted
curve to a period 1% longer, and the dashed curve to a
period 1% shorter. The vertical scale shows values in discre-
tised form corresponding to 128 time steps per period.

tised version of the problem in the next section. Notice
that this integration makes the unit delta function at
t = 0 appear as an elevation of the first point by unity
above the smooth underlying functions.

When kernels are calculated from other models, the
shapes may not agree quite so well with the approxi-
mate ones. A particular case of some interest is Cre-
mer’s model [14, § 5.4], in which an ideal text-book
string is terminated in a “body” model consisting of a
spring and dashpot in parallel, with parameter values
chosen to match approximately the frequency-depen-
dent decay rates of overtones on a particular violin
A-string. This model has been discussed elsewhere as
an example of narrow reflection functions [5]. It has a
delta-function reflection from one end of the string,
which is assumed rigidly anchored, while the reflection
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from the “body” is described by a delta function fol-
lowed by an exponential “tail” as the spring-dashpot
combination recovers its equilibrium position. When
kernels are calculated for this model using the “cor-
rect” period, and periods 1% longer and 1% shorter,
the results are as shown in Fig. 7b. The two perturbed
periods both produce kernels bearing an obvious re-
semblance to Fig. 6c, while the natural period in this
case produces a kernel which is recognisably related to
Fig. 6b, albeit a little distorted. The width of the
Gaussian reflection functions in Fig. 6a was chosen to
give the same second moment as that for the “body”
reflection function of Cremer’s model, so that the two
cases are immediately comparable.

3.2. Solutions with the idealised kernels

It is not easy to make progress finding analytic solu-
tions for periodic motion using kernels other than the
Raman-model one, but if we retain the piecewise-lin-
ear friction model used in Section 2 it is straightfor-
ward to compute examples. Numerical solutions using
the integral eq.(21) have been presented by Schu-
macher [17], using a similar approach to that em-
ployed here, but it is worth giving some examples here
since examination of them reveals interesting points of

similarity and contrast with the discussion in Section 2..

We will consider some cases of periodic solutions us-
ing the “bucket” kernel shown in Fig. 6 b, which was
argued to be a canonical problem for any model with
narrow reflection functions, for oscillation with the
natural period.

First, it is important to see why the delta function
at t = 0 must be included in the kernel. It is clear from
Fig. 1 that f (¢) and v(¢) must have jumps at the tran-
sitions between sticking and slipping in order to be
compatible with the assumed friction law. However
we know that f(¢) must be bounded (by the limits of
friction for a given normal force), so that if k(¢) is a
continuous function, then by eq. (21) v(z) would be
continuous. This contradiction may be resolved by
including the initial delta function. Write

k(=560 +k(@), (34)

where & (7) will be continuous if both reflection func-
tions from which it is derived are smooth, and will be
assumed here to have the piecewise-linear “bucket”
form (with integrated value — 1 to allow for the re-
moval of the unit delta function). Then eq. (21) be-
comes

v(t)=f(t)+EE(t-—r)f(v(‘c))dr. (35)

Now v — f will be continuous by the previous argu-
ment, but v and f separately can have the required
jumps (of equal magnitude).

The simplest procedure for obtaining numerical so-
lutions is virtually the same as was described in Sec-
tion 2.1. We first discretise the waveforms v (¢) and f (£)
at some chosen temporal resolution. If we now assume
a single-slip-per-cycle solution and the same piece-
wise-linear friction curve as before, then the formal
problem is identical to that of eq. (7) except that the
matrix contains different entries. This matrix multi-
plying the vector of forces represents the convolution
integral of eq. (21) in discrete form, so the matrix is
now replaced with a circulant matrix whose first row
is the appropriate discretised form of & (¢). The proce-
dure of egs.(8)—(12) now vyields a formal solution,
which must be checked against the same set of self-
consistency conditions listed earlier. As with the Ra-
man model discussed earlier, the procedure can be
readily generalised to solutions with more than one
slip per cycle, by rearranging the rows and columns of
the matrix before partitioning and solving.

To illustrate the procedure, and explore the similar-
ities to and differences from the Raman-model results
described earlier, it is sufficient to consider only cases
with a single episode of slipping in each cycle. To
facilitate direct comparison we may take f = 3/7 as
before, but to allow for the resolution of more rounded
waveforms we now divide each cycle into 70 time
steps. We use the “bucket” kernel suitably discretised
into this number of points, with an amplitude which is
approximately half that determined by the reflection
functions of Cremer’s model with this time discretisa-
tion and value of . This corresponds to reflection
functions which are a little broader than that of Cre-
mer’s model, so that velocity waveforms will be ex-
pected to be rather more smoothly-varying. The val-
ues in the first row of the circulant matrix plotted are
in Fig. 8.

First, we show some results calculated by the proce-
dure described above, when the slope of the slipping
friction curve, k, is zero. These are plotted in Fig. 9 for
a range of assumed sticking times, in multiples of 10
time steps from 10 to 60. The nominal Helmholtz
motion for this case would stick for 40 time steps per
period. In each case, one cycle of v(f) is shown as a
solid line while »(t) — f (t) is shown as a dashed line.
The velocity waveforms show smooth variation dur-
ing slipping, in obvious contrast with the discontinu-
ous solutions to the Raman model shown in Fig, 3.

The next step is to check the self-consistency condi-
tions to see which (if any) of the computed results satisfy
the full specification of the problem. In the case of the
Raman model, this led to limits on the allowed value

- of bow force. The results of applying those conditions

to the present calculations is quite different. Recall
that we are expecting v — f to approximate a dis-
cretely-sampled continuous function, while v will
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I'ig. #, Kernel function, in appropriate discretised form for
10 thue steps per period, used in the computed examples. It
is the "bucket” kernel, with the initial delta-function restored,
ot - 3/7.

penninely have jumps at the transitions between stick-
ing und slipping. (This distinction cannot, of course, be
woen cloarly in any solution based on a particular
discretisntion, but it can be confirmed by varying the
fength of nssumed time step.) For a given friction func-
tion, there is a critical value of v — f which divides the
wliching state from the slipping state. All the self-con-
silency comditions can be included in the statement
this! ¢ [ must pass through this value at the mo-
ments of lransition between sticking and slipping, and
not ¢ross il at any other times. Note that frictional
hiysteresis does not enter this particular problem, be-
caune we nre using the time-symmetric kernel appro-
printe to self-excited oscillation at the natural period
al the free string. All the velocity waveforms shown in
Fig. 9 are time-symmetric, whereas the flattening pro-
duved by [rictional hysteresis is associated with a lack
ol symmetry botween the transitions from sticking to
alipping and vice versa [12]. The equivalent canonical
jprohlem with hysteresis would involve the “staircase”
kernel of I'ig, 6¢, but that possibility is not pursued
here.

A procedure to find allowed solutions is thus as
fullows, ‘I'he waveforms are computed for all possible
lengths of sticking time per cycle. The critical value of
v [ lor the desired friction curve must be bracketed
by the computed values for the last sticking point and
the fivst slipping point, and no consecutive pair of
vafuex during either the sticking phase or the slipping
phase must cross the critical value. For the case illus-
trated here, the second condition is readily satisfied,
sinee it turns out that for every case the first and last
sticking values of v — f are smaller than all other

sticking values, while the first and last slipping values
are greater than all the others.

A graphical approach can now be used. In Fig. 10
the values of v — f before and after the transition are
plotted against length of sticking interval. The critical
value for a given friction function can be shown as a
horizontal line: two examples are shown on the figure,
corresponding to the two friction functions shown in
Fig. 11. Within the level of discretisation of these com-
puted waveforms, any cases for which the horizontal
line lies within the band delimited by the two curves
qualify as possible periodic solutions to the problem;
but the “correct” solutions are presumably much
more tightly defined than this: we expect the true
v — f to be continuous, so that repeating the calcula-
tion with a shorter time step will make the band of
allowed values narrower. The best guess based on the
results shown here might be that solutions occur
where the horizontal line corresponding to the chosen
friction function intersects a curve lying mid-way be-
tween the two limits plotted.

This behaviour contrasts with that of Raman’s
model, discussed earlier. In that case, v — f generally
had finite jumps between successive points. Thus the
critical value could be leapfrogged, as indeed could be
a finite range within which hysteresis would otherwise
have operated. The self-consistency conditions simply
had to ensure that the jumps encompassed the range
required, and this produced the finite ranges of al-
lowed normal force illustrated, for example, in Figs. 4
and 5.

It is'a shortcoming of the particular combination of
friction model and kernel used here that it is not pos-
sible to treat variations in bow force consistently. Sup-
pose, for example, that in the case plotted in Fig. 11a
the bow force were increased, thus scaling the whole
curve up by some constant factor. This would produce
a range of v — f over which hysteresis would occur,
which is incompatible with the kernel function in use
here. On the other hand, if the bow force were de-
creased there would be a range of v — f in which the
line of slope unity (see Fig. 1) would not intersect ei-
ther desired branch of the friction relation, again vio-
lating the assumptions made in the calculation. Nev-
ertheless the simplicity of the model used here makes
it sensible to extract as much insight into the be-
haviour of the solutions as we may.

Examination of the two friction functions plotted in
Fig. 11 shows that the difference between them is at
least similar to that produced by a change in normal
force. In particular, the jump in force between the limit
of sticking friction and value for sliding friction is
increased. The value of sliding friction force is un-
changed, but this is immaterial: the mean value of the
friction force plays no role since the kernel function
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Fig. 9. Computed periodic solutions using the kernel of Fig. 8 and k = 0, with assumed slip times a) 60, b) 50, ¢) 40, d) 30,
€) 20 and f) 10 time steps. Other parameters are: f, = 1, v, = 1, ¢ = 0.3. The solid curves show v (¢), the dashed curve v () — f (¢).
One period is shown in each case, and the vertical scale is the same throughout.

integrates to zero over a complete period. If we make
this tentative identification that a lower horizontal
line in Fig. 10 is rather like a higher bow force, then
the falling shape of the curves in Fig. 10 produces a
prediction which is consistent with other studies [12,
14, §5.5]: when the bow force is decreased for a given
oscillation regime, the length of slipping interval in-

creases. In other terms, lower bow force results in a
travelling Helmholtz corner which is less sharp.
There is another feature of the curves in Fig. 10
which deserves comment. They seem to be made up of
several separate curve segments with transitions near
the values of sticking interval 30, 40, 50 and 60. These
presumably correspond to different regimes of oscilla-
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I'ig. 10. Bow force limits, for single-slip-per-cycle periodic
sohitions to the rounded-corner model as in Fig. 9. The con-
struction o find the “best” slip time is described in the text.

tion of the string, approximating to different members
ol Raman’s classification into “higher types” {3]. (Note
that the short rising portions of the curves near some
of these transitions may be an artefact of plotting,
since successive values are simply joined by line seg-
ments, When there is a change of regime, there might
well be o sharp jump in the curves.) Thus this simple
model, with all its shortcomings, may be able to shed
n ligtle tight on the long-standing problem, alluded to
in section 2, of how to tell which of the rich array of
poasible periodic solutions to Raman’s model will sur-
vive in a4 model with reflection functions of finite
width. This question undoubtedly merits further
study, but is not pursued here.

Next, we examine what happens to the solutions
when the slope k of the slipping-friction curve is made
non-zero, This is illustrated by the “Helmholtz” case
of the family studied above, sticking for 40 time steps
pet period of 70 time steps. A sequence of waveforms
ol (1) is shown in Fig. 12. When k =0 we have the
salution already seen. As k increases, the shape
vhiunges gradually, until the “solution” begins to re-
idre i slipping speed greater than the bow speed,
which violales the model assumptions. This shape
vhanges through an alternative form (Fig. 12d) as &
becomes even larger. This sequence of shapes is some-
what similur to that calculated from the Raman mod-
al, given in eq. (18). This strongly suggests that some
aspects of the strange limiting behaviour of Raman’s
model, explored in Section 2, carries over to models
with reflection functions with finite width.

It is possible that there is some physical significance
in these last results: the waveform shown in Fig, 12d
supgests that the “Helmholtz” motion might give way

©)

Y%

Y

Fig. 11. Two cases of piecewise-linear friction curves with
k = 0 and no hysteresis, as described in the text.

to an oscillation regime in which there are two short
slipping phases with a short sticking phase in between,
under conditions when the friction curve slope is high.
This might bear upon the formation of “multiple-fly-
back” regimes, discussed elsewhere [6, 18], which are
sometimes favoured over the Helmholtz motion in a
starting transient in which the bow force is initially
high. Such regimes have been found in simulation
studies using models with narrow reflection functions,
and have also been observed on real violin strings.

3.3. The Friedlander limit of rounded-corner models

The final issue to be examined concerns the limiting
form of the solutions when the model is allowed to
tend towards the “Friedlander” case. We have already
seen that the kernel k(f) does not tend towards the
delta-function Friedlander/Raman kernel. However
many solutions to Raman’s model are known to give
a good first approximation to what is found in reality,
so presumably the solutions to the models in this
limit are more similar than simple examination of the
kernel functions might suggest.
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Fig. 12. The influence of friction-curve slope k on periodic solutions to the rounded-corner model. Parameters are as for

Fig. 9, but with a) k = 0; b) k = 0.01; c) k = 0.03; d) k = 0.05.

To obtain some insight into this question by analyt-
ic means, it is convenient to take a different approach
to the solution of eq.(21). It will be recalled from
Section 3.1 that the width of the reflection functions
manifests itself in the “bucket” kernel only through an
overall scale factor — narrower functions make the
kernel bigger, and in the Friedlander limit of unit
delta-function reflections the scale factor tends to in-
finity. This is the limit we wish to consider, but it is not
casy to follow the consequences of scaling k (t) through
the matrix partitioning procedure presented above.
This is the only procedure which allows us to solve for
a mixture of unknown forces (during sticking) and
unknown velocities (during slipping), which is neces-
sary to treat the general case. However, if we restrict
attention to the case k % 0, it is possible to solve in-
stead for the force waveform £ (f) over the entire peri-
od, since the velocity during slipping can be uniquely
recovered from it using the assumed friction relation

1).

First, k(¢) and f(t) may be expressed in terms of
Fourier series:

ki)=Y k,exp(2nin/T) (36)

and

fO =X fexpnin/T). (37)

Now assume a solution with a single episode of slip-
ping per cycle, of duration ¢ T (where ¢ = f for the
ideal Helmholtz motion). The general problem (21)
may then be written

TX> k, f,exp2nint/T)

0=t<eT)

_{[f/ﬁ,~c]/k @rsism

(using the convolution theorem for Fourier series).
Multiplying by exp(—2mimt/T) and integrating
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+ k1, E..:j" 21i(n —m) (39)
So far as the unknown Fourier coefficients f,, are
concerned, this is a set of linear simultaneous equa-
tions. Presumably a possible solution procedure
would be to truncate the set, choosing a suitable trun-
cition order by a convergence test, but this is rather
cumbersome, and does not compete in efficiency with
the procedure used earlier, which in any case dealt
with the more general case in which the value of k was
unrestricted.

The advantage of this approach is that it reveals
very easily what happens in the Friedlander limit. If
any one of the coefficients k,, is allowed to tend to
wnlinity, it is clear that the corresponding value f,,
must tend to zero to keep the product on the left-hand
side of eq. (39) finite. This argument will in general
apply to all the Fourier components except for m = 0.
Rellection functions satisfying A, = 4, = 1 (see eq. (25))
will have ko =0, so that f(t) can have a non-zero
mean value as we expect, but if none of the other
I ourier coefficients of the kernel vanish, then in the
I'ricdlander limit all other Fourier coefficients of f(z)
will tend to zero. So f(¥) tends towards a constant
valuc. It follows that the velocity can only take two
virlues, v, during sticking and a constant value during
alipping which is governed by the fact that »(f) must
integrate to zero over one cycle. In other words, any
kernel function whatever, when multiplied by a scale
Inetor which is allowed to tend to infinity, will give
periodic solutions matching those of the Friedlander
model (including the ideal Helmholtz motion). This
arpgument only breaks down if the kernel function has
wny missing harmonics in its Fourier series, but this
genernlly arises only when the bowed point falls ex-
aclly at a node of a vibration mode of the coupled
string/body system, in which case that mode cannot
be driven by the applied force from the bow and the
vorresponding Fourier coefficient of v (¢) will be zero.

s limit can be explored using examples com-
puted by the method described in the previous subsec-
flon. As the scale factor is increased, a sequence of
eventls is observed which initially follows that of
I1ig. 12, As the scale factor is increased further, the
undesirable “wiggles” in the velocity waveform be-
come progressively higher in frequency, but then with
n lurther increase in scale factor this behaviour gives
wity otice more to smooth variation of velocity during
alipping, which does indeed tend towards a constant
vitlue, as predicted by the argument above.

4. Conclusions

Various idealised models for the self-excited motion of

.a bowed string have been studied, particularly in rela-

tion to possible periodic solutions. Friedlander’s mod-
el, with no boundary losses and perfect delta-function
reflections, has been considered as a limit of Raman’s
model (with delta-function reflections involving some
energy loss) and of rounded-corner models in which
the reflection functions are narrow compared with the
period of the motion. In both cases, the limiting pro-
cess was not straightforward, and the set of periodic
solutions of the Friedlander model do not give a good
guide to solutions of the other models.

Procedures have been given for finding all possible
periodic solutions to the various models considered.
In a companion paper [11], corresponding procedures
for investigating the stability of these solutions are
described. Examples have been given of the behaviour
of the various models, but there is no doubt that more
detail remains to be discovered. Future investigations
could couple the methods used here with the use of
systematic simulation described elsewhere [6], in an
effort to shed more light on the question of which
features of the modelling of the violin string and body
might contribute to subjective impressions of “ease of

playing”.
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Appendix

The matrix M in eq. (13), with no rows or columns
deleted, is square with dimension N. So the ’th of eqs.
(13) with no deletions may be written

(A1)

where the subscripts are all to be taken as integers
mod N. Now let D be the set of indices of the deleted
rows and columns. Then eq. (A 1) holds for i not in D,
but for i in D it is replaced by

Xp=1+[x;—p + x;4,1/2

x;=0. (A2)
The solution may be written in the form
x; = (least j such that i + jp(mod N) is in D)

x (least k such thati — kp(mod N)isin D) (A3)
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where j and k are non-negative integers, so that x; is
always an integer. Eq. (A 2) is obviously satisfied by
this since j and k& are both zero when i is in D, and
eq. (A1) is also satisfied by virtue of the identity

Jk=1+{+ Dk -1+ (- 1)k +1))/2. (Ad)

Note that x; is finite only if D can be reached from i by
steps of p (mod N), i.e. only if i is congruent to some
element of D (mod h), where h = HCF (p, N). Since we
assumed in the beginning that p and N were co-prime,
this is always satisfied. Otherwise, D would have to
contain at least one index from each residue class
(mod h), so that if D consisted of a consecutive set of
columns then it would need to contain at least ‘h
columns.
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