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On the Stability of Bowed String Motion

J. Woodhouse

Cambridge University Engineering Department, Cambridge, UK

Uber die Stabilitit der Bewegung
einer gestrichenen Saite
Zusammenfassung

Es wird eine linearisierte Stabilitdtsuntersuchung fiir pe-
riodische Lésungen verschiedener idealisierter theoreti-
scher Modelle der Bewegung einer gestrichenen Saite
ausgefiihrt. Im einfachsten Fall kann man einen quantita-
tiven Wert fiir die Stabilitdtsgrenze auf der Grundlage
von Raum-Zeit-Diagrammen erhalten, was von betricht-
lichen physikalischem und intuitivem Reiz ist. Fiir allge-

meinere Fille mufl man Zuflucht zu Berechnungen suchen,
und es werden zwei verschiedene Formulierungen mit
Zustandsvektoren angegeben, von denen jede verschie-
dene Aspekte des Verhaltens in gewissen Modellen be-
leuchtet. Die endgiiltige Formulierung erlaubt die Durch-
fiihrung einer Stabilititsuntersuchung fiir die allgemeinste
Klasse von Modellen der ,,abgerundeten Ecken®, Es wer-
den repridsentative Ergebnisse fiir die verschiedenen
Aspekte jedes Modells angegeben und ihre physikalische
Interpretation wird diskutiert.

Sur la stabilité du mouvement d’une corde frottée
Sommaire

On procéde a une analyse de la stabilité des solutions
périodiques déduites de divers modéles théoriques du
mouvement d’une corde frottée. Dans le cas le plus simple
il est possible d’obtenir une estimation quantitative du
seuil de stabilité, & partir d’'une analyse basée sur des
diagrammes espace-temps qui est trés attrayante du
double point de vue physique et intuitif. Pour les cas plus
généraux, on ne peut éviter le recours au calcul; et nous
présentons deux formulations differentes de vecteur
d’état, chacune apportant quelque éclaircissement sur le
comportement de certains modéles. La formulation finale
permet de mener & bien 'analyse de la stabilité pour la
catégorie la plus générale des modéles & angles arrondis.
On fournit des résulats représentatifs des divers aspects
de chaque modéle, et on discute leur interprétation phy-
sique.

1. Introduction

Studies of the motion of a bowed string can be divided
into two broad categories. First, periodic motion pro-
duced by steady bowing can be investigated by a vari-
ety of means, analytical, computational and heuristic.
Such studies have revealed a very rich set of possible
periodic regimes, including the “Helmholtz motion”
which is the one generally sought by players of bowed-
string instruments [1-3]. For such regimes, the al-
lowed ranges of the various parameters controlled by
the player (bow force, bow speed and bow position on
the string) can be found, by approximate analytical
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calculations [4—7] or by numerical simulation [7-9].
For a given oscillation regime, the variation of de-
tailed motion within those allowed ranges can be sim-
ilarly investigated. Particularly for the Helmhoitz mo-
tion, several such studies have been made [5, 10].
These have shed light on many aspects of the be-
haviour of real bowed strings.

However, many practical problems related to bowed
strings cannot be investigated in this way, since they
involve transient behaviour of one kind or another.
This second category of study is far harder, and far less
progress has been made at the present time. As a result
of the strong nonlinearity arising from stick-slip fric-
tion, which drives all bowed-string motion, transients
can in general only be investigated seriously via nu-
merical simulation [7]. The only exception, which to
an extent bridges the gap between the two categories
of study, is the investigation of the stability of periodic
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oscillation regimes. By assuming a small perturbation
superimposed on a periodic motion, one may be able
to establish whether this perturbation tends to grow
or decay with time. A requirement of stability may put
further constraints on the allowed ranges of the player’s
parameters, so that it adds information to the period-
ic-motion studies. At the threshold of instability the
analysis may predict a particular form of perturbation
to be the first to go unstable, and this gives a clue, at
least, as to how the motion will subsequently evolve.
The analysis may soon break down, being based on an
assumption of a small perturbation to a given periodic
regime, but one can at least make a guess as to which
other periodic regime will eventually take over as the
perturbation becomes large.

To perform a stability analysis, a particular theoret-
ical model is required. It is easiest to make quantita-
tive progress using the very simple model due to Ra-
man [1], the scope and limitations of which have been
discussed elsewhere [2]. In this study, Raman’s model
will be used to establish methods and to discover the
physical mechanism and nature of possible instabili-
tics. The method of analysis is based initially on space-
time diagrams. This approach, introduced in an earli-
cr paper [11], has the advantage of making explicit an
aspect of the physics of instability which is not heavily
dependent on a particular theoretical model. After
detailed results have been obtained from Raman’s
model, the analysis method is extended to the case of
rounded-corner models [6, 7].

2. Stability of solutions to the Raman model

2.1. Subharmonics

The Helmholtz motion is characterised by a single
“corner”, or velocity discontinuity, reflecting back and
forth between the ends of the string. In a space-time
diagram, it follows the path shown dashed in Fig. 1.
The slope of the line segments is governed by the wave
speed on the string. Now suppose that the bow is
applied a distance f L from one end of the string, L
being the total length of the string. At that point,
appearing as a horizontal line in the space-time dia-
gram, the contact conditions alternate between states
of sticking friction and sliding friction, transitions be-
ing triggered by the passage of the Helmholtz corner.
This alternation is indicated in Fig. 1 by showing a
solid line where the bow and string are sticking, and
a dotted line where there is slipping.

If we now introduce a small, spatially-localised per-
turbation to the ideal Helmholtz motion, it will travel
along a trajectory parallel to that of the Helmholtz
corner while it is on the free string. The difference

Fig. 1. Space-time diagram, showing the path of the Helm-
holtz corner (dashed line). Time is plotted horizontally, dis-
tance along the string vertically. The position of the bow is
marked by a horizontal line, plotted solid where the bow and
string are sticking and dotted where they are slipping.

comes when it impinges on the bow, and what hap-
pens then depends upon whether the bow-string con-
tact is sticking or sliding at that moment. Once a
model has been constructed for the interaction with a
sticking and a sliding bow, it is possible to follow the
trajectory of the perturbation in the space-time dia-
gram, with due regard for any interactions with per-
turbations initiated on other trajectories, and thus
predict whether a general perturbation can grow with
time or whether all possible perturbations will decay.

The detailed behaviour found in such an analysis
depends on the model employed to describe the string
motion and the frictional force. The simplest possible
model for the string allows transverse motion only,
described by the familiar wave equation. Interaction
with the bow is very easily described within this mod-
el. If torsional motion of the string is included, things
are more complicated since an incident transverse
wave scatters some of its energy into torsional waves
during any interaction with friction at the bow. These
will follow different trajectories in the space-time dia-
gram since the torsional wave speed is different from
the transverse wave speed (usually faster), and they
may later scatter back into transverse motion by fur-
ther interactions at the bow (or perhaps at the termi-
nations of the string). Further complications, which
are probably less important but which certainly influ-
ence the detailed motion, come from bending stiffness
in the string [4—6], and the finite width of the ribbon
of bow-hair in contact with the string [11].

Similar remarks can be made about models of the
frictional force: the simplest model gives a very
straightforward answer, but it is inadequate to de-
scribe the tribological behaviour of rosined surfaces
fully, with consequences which have yet to be properly
explored. This simplest model, the “friction-curve
model”, is the familiar one which assumes that the
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friction force depends only on the instantaneous rela-
tive velocity of the bow and the surface of the string,
according to a relation like that sketched in Fig. 2.
The vertical portion of the curve describes the indeter-
minacy of friction force during sticking, provided the
limit of sticking friction is not exceeded. The curved
portions describe sliding.

First, we examine the behaviour of a perturbation
to the Helmholtz motion as it interacts with a sticking
and a sliding bow, using the simplest models for both
string and friction force. The sticking bow is particu-
larly simple in this case; since the string velocity is
fixed at the bow speed v,, any velocity perturbation
incident on the sticking bow must be perfectly reflected
with a reflection coefficient of — 1. There is no trans-
mitted wave. This simple interaction is shown sche-
matically in Fig. 3a.

The sliding bow requires a little more calcula-
tion. The sliding speed of the Helmholtz motion,
v, = — vy {1/ — 1), determines an “operating point”
on the friction curve. A small perturbation will only be
influenced by the friction curve behaviour near this
point, so we may linearise the friction-velocity relation:

flo,+80)~ f(v)+80 f'(v)=filc+kdv), (1)

say, for the velocity perturbation 8v. The normal force
between bow and string, f,, appears as a scalar multi-
plier on the friction-velocity relation. It is explicitly
included for notational consistency with ref. [2]. The
constant force cf, is associated with the ideal
Helmholtz motion. It causes a constant, static slope
discontinuity in the string at the bowed point. Since it
plays no role in the dynamics, it may be ignored in the
perturbation analysis. Now carrying out a standard
calculation of the reflection and transmission coeffi-
cients r and ¢ at the bowed point, when the linearised
force-velocity relation is imposed on an ideal string of
tension T and line density m, we obtain

2
f=——"—=1 s 2
kAT, +¢ 2
say, where
k1, Y, k1 Y,
¢ = fo Yo ~ Hh¥ 3)

T2—kfY, 2 °

and where Y, = (Tm)~'/? is the wave admittance of
the string. Correspondingly,

kAT

: @

r={_
These results are illustrated schematically in Fig. 3b.
The approximate results exploit the fact that k f, Y, is
generally small. If k is positive, as is expected for slid-
ing friction, the transmitted signal is slightly amplified

_

Fig. 2. Typical relation between frictional force f and string
velocity v at the bowed point.
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Fig. 3. Interactions of a localised velocity perturbation with
the bow and the string’s terminations: a) interaction with a
sticking bow without torsional coupling; b) interaction with
a slipping bow; c) interaction with a sticking bow with cou-
pling to torsional waves; d) interaction with one boundary of
the string, within Raman’s model.

by interaction with the bow, an effect commonly de-
scribed as “negative resistance” [12]. This amplifica-
tion is the source of any possible instability (at least
within this linearised analysis): all other influences on
a perturbation are dissipative, and the stability
threshold is determined by the condition that the total
effect of dissipative phenomena just balances that of
amplification at the sliding bow.

If scattering of transverse waves into torsional
waves at the bow is allowed, the interaction of a per-
turbation with the bow is somewhat more compli-
cated. Only the simplest model of this process will be
treated. If any reflection of torsional waves from the
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string terminations is neglected, so that torsional
waves are simply ignored once they have been gener-
ated, then they may be allowed for by a simple trans-
formation of the friction-velocity relation involving a
linear shear [8]. For interaction with the sliding bow,
the result is merely a change in the value of {, and
requires no further analysis. Interaction with the stick-
ing bow, on the other hand, is made significantly more
complicated. The sticking portion of the f (v) relation
is no longer vertical, but becomes a straight line with
a finite negative slope — A4 f,, say (determined by the
impedance ratio between torsional and transverse
waves). The analysis of egs. (1)—(4) may be applied, so
that the transmission and reflection coefficients are

2

t=———=1—17, 5
2r ALY, 4 ©)
say, where
Af,Y,
2+A6Y
and
r=—7y. 0

Il coupling to torsion is weak, y will be close to unity
50 that the transmitted wave is small. As expected, the
interaction (so far as transverse waves are concerned)
is dissipative. It is shown schematically in Fig. 3c.
Neglecting for the moment the reflected waves gen-
erited at the slipping bow, and without any scattering
into torsional waves, the path of a perturbation may
be readily plotted in the space-time diagram. Two
examples are shown in Fig. 4. As has been pointed out
hefore [11], any such path is periodic with a period

Subharmonic  period

Fig. 4. Subharmonic paths in the space-time diagram. For
B = 0.3, elemental subharmonic paths are possible with sub-
harmonic order a) 3 and b) 4, depending on the phase with
respect to the Helmholtz motion.

which makes it a subharmonic of the Helmholtz mo-
tion. It will be referred to as an “elemental subhar-
monic path”. The order of the subharmonic depends
on the bow position f. When B = 1/n, all possible

“elemental paths correspond to an nth subharmonic.

For general p, elemental paths are possible with sub-
harmonic periods given by the two nearest integers to
1/B, the choice depending on the phase with respect to
the Helmholtz motion. This is illustrated in Fig. 4: the
two cases show the same value of § = (.3, and a differ-
ence of phase produces a third subharmonic in case
(a), while case (b) gives a fourth subharmonic. Subhar-
monic activity echoing the behaviour of these elemen-
tal paths certainly occurs in some form on real violin
strings, since it is occasionally audible. A description
of how best to elicit audible subharmonics is given in
ref, [11].

2.2. Stability for § = 1/n without torsional interaction

To obtain a quantitative stability threshold it is first
necessary to complete the specification of the model.
If no energy dissipation is included in the model, it is
plain that nothing will counteract the amplification
effect just described, and all perturbations will be un-
stable (or at best neutrally stable). This general insta-
bility was first noted by Friedlander [13]. Dissipation
on a real string occurs during wave propagation along
the string and in the reflection processes from the
string’s terminations (and also from losses into tor-
sional waves, discussed above). In practice propaga-
tion and reflection effects are accompanied by wave
dispersion, which complicates the analysis consider-
ably.

To obtain quantitative results which capture at least
some of the essential physics, we use the only model
which does not have this complication, Raman’s mod-
el. The string is assumed to be an ideal, lossless, non-
dispersive textbook string. Dissipation occurs only at
the terminations, where a simple reflection coefficient
is assumed (independent of frequency). For simplicity,
the same reflection coefficient will be assumed at both
ends of the string. It will be denoted — A= — (1 —¢),
where ¢ will generally be small. (The negative sign is
included because any remotely realistic string termi-
nation is approximately a fixed point, which produces
an inverted reflection.) This boundary reflection is
shown schematically in Fig. 3d.

Now that the interaction of a localised velocity per-
turbation with the sticking bow, the sliding bow, and
the string’s terminations are all known, it is possible to
calculate a stability threshold for the assumed Helm-
holtz motion. For the special case in which § = 1/n,
without torsional interactions, this can be done ap-
proximately in closed form. It is necessary to take
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Fig. 5. For f = 1/3 and without allowance for torsional cou-
pling, a typical elemental subharmonic path, shown as a
heavy line, interacts with only two other e¢lemental paths,
shown as lighter lines. The interactions occur at the ringed
points, at the slipping bow.

account of the reflections produced at the sliding bow
(according to eq. (3)). These couple together elemental
subharmonic paths which pass through different
“windows” of sliding during the subharmonic period,
as is illustrated in Fig. 5. The heavier curve shows a
portion of one particular elemental subharmonic
path, for f = 1/3. In the course of one subharmonic
period it interacts with the two elemental paths shown
as lighter curves. Interactions occur at the ringed
points, by the mechanism sketched in Fig. 3b.

It is thus necessary to find the pattern of amplitudes
on the n different elemental paths which is least stable.
Let the amplitude of perturbation passing upwards
through the jth “window” be v;. This interacts with
any other elemental path which crosses it at the slip-
ping bow. We seek eigenvector solutions, such that

Uiy, = Qv; ®)

where  is the growth (or decay) factor per subhar-
monic period. Since a given elemental path meets the
slipping bow twice per subharmonic period, within
that time it interacts with just two other paths, which
are the ones corresponding to amplitudes v;_; and
v;.,, as may be seen from Fig. 5. Following the paths
through one subharmonic period, the amplitude evo-
lution may thus be seen to be governed by

ij= /12"(1 -+ C)Zvj-' {1+ 5)2’13””1"1
~ LA+ 00, ©)

Linearising the right-hand side, treating { and & as
small quantities,

Qux(1—~2ne+20v;~Lw;_; —{v;,. (10)

This has the form of a matrix eigenvalue problem,
which is readily solved by noting that the eigenvectors
take the form

2nrijrin

(11

where v, is a constant, and r is an integer between 0
and n — 1. Substituting into eq. (10), the growth rates

v;=1g€

Q are found to be

R ~1—-2ne+2{(1 —cos2nr/n). (12)

This clearly shows the competition between amplifica-
tion (from the term containing {) and dissipation (from
the term containing ¢). The value of growth rate based
purely on the elemental subharmonic path of Fig. 4a
would be given by eq. (12) without the cosine term.
That term represents the modification arising from the
interaction of elemental paths.

The threshold for stability may now be calculated
from the fastest of these growth rates. If n is even, this
clearly arises when r = n/2, while if »n is odd it arises
when r = (n — 1)/2. The threshold depends only on the
ratio of ¢ to {, which we denote & (following ref. [2],
eq. (16) et seq.):

¢ { n/2 (n even)
A== . (13)

¢ (n/[1 —cosn(n—1)/n] (nodd)
For values of  in excess of these the Helmholtz motion
is unstable, while for values less than these it is stable.
The pattern corresponding to the fastest growth rate
follows from substituting the critical value of r into
eq. (11). When n is even the stability threshold always
corresponds to an eigenvector [— 1,1, — 1,1, —1.. .},
so that the pattern is in fact an octave subharmonic,
regardless of the value of n. When n is odd, the
threshold pattern is always an nth subharmonic, but
as n becomes large it can be described as a slowly-
modulated octave subharmonic.

The possibility, seen for the first time in this exam-
ple, of elemental subharmonics combining to give ei-
genvectors with a shorter periodicity will be met re-
peatedly. Any period which is a factor of the period of
the elemental path may occur. An extreme case, which
has been highlighted by Weinreich and Caussé [14],
occurs when the amplitudes on the elemental paths
combine in such a symmetric way that the total pat-
tern has the same periodicity as the underlying period-
ic motion whose stability is being investigated. We
might call these “unsubharmonics”. Such a solution
occurs in the example just analysed, for r = 0. The
eigenvector from eq. (11) is then simply [1,1,1, ..., 1].
For this case, the corresponding “growth” rate is the
least unstable of all the possible values. It receives no
amplification from the slipping bow but still experi-
ences dissipation from the string’s terminations, so
that it does not grow under any circumstances. It will
emerge later that this behaviour is characteristic of the
case f# = 1/n, but that for more general 8 such “unsub-
harmonics” frequently provide the most unstable per-
turbation pattern, which governs the stability thresh-
old. The physical reason for this behaviour will be
discussed in section 2.5.
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2.3. A computational approach for the general case

For more general values of §, or when torsional inter-
actions at the bow are included, or for periodic solu-
tions more complicated than the Helmholtz motion,
stability analysis is more difficult. For general f, ele-
mental subharmonic paths exist with two different
periodicities, which interact with each other. To follow
these interactions, even in the absence of torsional
coupling, is quite complicated. With torsional cou-
pling, elemental subharmonic paths couple together at
every time step, not only when the bow-string contact
is slipping. Again, this makes it hard to write down an
equivalent of eq. (9). Finally, for periodic solutions
other than the Helmholtz motion the “building
blocks” of the perturbation analysis are more compli-
cated than the elemental subharmonic paths such as
shown in Fig. 4.

All these factors make it laborious to use the ap-
proach of the previous section, or indeed to pursue
closed-form analytical arguments by any approach.
However, an alternative methodology can be devel-
oped, again inspired by the space-time diagram, which
allows stability thresholds to be computed for the
most general case of periodic solutions to the Raman
model. The physical insights from the space-time dia-
gram, and the calculation of the previous section, can
be used to offset some of the shortcomings of a purely
computational approach (compared with a closed-
form solution).

At a given time instant, the state of a perturbation
to any specified periodic solution may be character-
ised by a vector of amplitudes. The approach is then
(o construct a matrix which transforms this state vec-
tor into the corresponding state vector after one peri-
od of the underlying periodic motion. The eigenvec-
tors and cigenvalues of this transfer matrix allow a
Judgement to be made about stability, and also give
informution about the associated physical behaviour.
The matrix is constructed from a product of matrices,
¢ich of which describes the transformation of the state
veetor in u single time step.

It 5 ensivst Lo develop the method through a specific
examplo, 5o consider the case p = 2, ¢ = 3. The length
of the string is subdivided into five equal segments,
and within the Raman model it is only necessary to
consider porturbations which have constant veloc-
ity within eanch segment [2, 13]. The state of a
goneral perturbation in the nth time step may thus
convenlently be described by a 10-element vector
[0, db0, w0, dY0, L, dPT, denoting amplitudes on
paths passing up and down through these five seg-
ments, as illustreated in Fig. 6. It is straightforward to
represent the transformation of this vector after one
time step, based on the interactions shown in Fig. 3.

U

Fig. 6. For the case p = 2, g = 3 the state of a perturbation
to the Helmholtz motion, or to any other periodic solution,
within Raman’s model may be fully characterised by ampli-
tudes of waves passing in the two directions through each of
the five subdivisions of the string’s length. These amplitudes
are labelled [u®,d™, v, 4%, ..., u®, dP] to form the state
vector for the stability analysis described in the text.

Two different transformation matrices are needed, de-
pending on whether the underlying Helmholtz motion
is sticking or slipping at the bow in this particular time
interval. During slipping, the result is:

[u*v] T o001 0o 0 0000 O] [u]
el |=A00 0 0 0000 Of[d»
upth 000 ¢ 140000 Offup
g+ 010 0 0 0000 Of|ap
ug*vl 1 000 0 0 0100 oOf][uf
gVl 1 0001+, ¢ 0000 O)dp
u+ 000 0 0 0001 Of|uP
de+y 000 0 0 1000 O][dw
Uty 000 0 0 0000 —A||up
a¢*P] 1 000 0 0 0010 Of]|d?]

(14)

while during sticking (with torsional interaction), the
matrix differs in that { must be replaced everywhere by
— 7. (Without torsional interaction, y = 1.) Denote
these two transformation matrices M, and M,. Equiv-
alent matrices may readily be constructed for other
values of p and q.

Now the transfer matrix for one complete cycle may
be constructed from a product of 2(p + g) matrices of
these two forms. For the particular case of the
Helmholtz motion, the result is

M = M}? M3 (15)

since there are 2 ¢ sticking intervals followed by 2p
slipping intervals, with the time discretisation in use
here. The result M is a real matrix, which will not in
general be symmetric. If all the eigenvalues of M lie
inside the unit circle in the complex plane, then all
possible perturbations must decay and the Helmholtz
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motion is stable. At the threshold of stability, the first
eigenvalue crosses the unit circle. Its phase will indi-
cate the order of subharmonic associated with the
instability pattern. The precise pattern of the most
unstable perturbation can be found from the eigenvec-
tor(s) (and the associated principal vectors, if there are
repeated eigenvalues which do not have distinct eigen-
vectors) [15].

It is equally easy to write down an equivalent of
eq. (15) for any other underlying periodic solution to
the Raman model. The rich set of possible solutions,
and a procedure for finding them when a piecewise-
linear friction curve is assumed, have been described
in a companion paper [2]. Given any such solution,
one simply constructs the product of matrices M, and
M, in the order which matches the required pattern of
sticking and slipping in one period. If the slipping
velocity in the underlying periodic solution varies at
different time steps, then for the stability analysis the
friction curve must be linearised around these different
values in turn. This means that the matrices M, will
not all have the same value of {, but this poses no extra
difficulty for the computation.

2.4. Results without torsional coupling

We examine first some computed results for the stabil-
ity of the Helmholtz motion in the absence of torsion-
al interaction. For the example described in the previ-
ous section, results for the eigenvalues for the
parameter values A = 0.99,{ =0.01, y =1 are given in
Table I. The first column lists the magnitudes of the
eigenvalues, which in this case are all less than unity
so that the Helmholtz motion is stable for this case.
(Note that all values are repeated twice. This is a
consequence of the fact that this formulation of the
problem uses a state vector of double the size which is
strictly necessary, in order to maintain a direct corre-

Table I. Results for the Helmholtz solution to Raman’s
model withp=2,9=3,4=099, (=001, y=1.

Order of
- subharmonic

[l O 2 (S JROSTRUS IR VR UL R

spondence with the space-time diagram. A modifica-
tion to the formulation to avoid this inefficiency will
be described in section 3.1.) The second column shows
the calculated phase of the eigenvector, divided by 2 x,
and the third column shows the subharmonic order
which follows from this phase.

In this case the eigenvalue closest to the unit circle
corresponds to an order-one “unsubharmonic”, a per-
turbation pattern with the same periodicity as the
Helmholtz motion itself. (More will be said in the next
subsection on the physical interpretation of such “un-
subharmonic” perturbation patterns.) A simple itera-
tion based on linear interpolation may now be used to
vary { and search for the condition at which the most
unstable eigenvector crosses the unit circle. The criti-
cal value of { for this example is found to be 0.0122.
Numerical experiments reveal that for general § (with-
out torsional interaction) the threshold depends (to a
first approximation) only on the value of a = {/e, as
was found in the case § = 1/n analysed in the previous
subsection. For the example problem, the stability
threshold is thus o = 1.22.

One interesting fact revealed in Table I seems to ap-
ply to the general case, according to extensive numeri-
cal experiments. The subharmonic orders associated
with the eigenvalues go no higher than the values asso-
ciated with the elemental subharmonic paths available
with the assumed value of §. Since 2 < 1/§ < 3, ele-
mental paths give second and third subharmonics, but
if the space-time diagram is drawn out in detail for this
problem (not reproduced here) it becomes apparent
that, with the interaction between elemental paths,
one can only guarantee a repeat of the pattern after
2 x 3 periods. Of course, a general combination of the
eigenvalues listed in Table I will produce a pattern
which only repeats after six cycles, but it is interesting
that the individual eigenvalues never seem to corre-
spond to this long periodicity.

Computed stability thresholds for a wide range of
values of p and g, for the Helmholtz motion with no
torsional interaction, are plotted in Fig. 7. Specifically,
allvaluesp=1,...,10,q=p, ..., 20 have been exam-
ined. The subharmonic orders associated with the
most unstable perturbations are also plotted in Fig. 7,
as the dashed line. A reflection coefficient A = 0.9995
was chosen for these computations, very close to unity
so that the results could be compared with the ap-
proximate result (13) for the cases ff = 1/n, as a check.
Agreement is obtained within the expected accuracy
of that formula. Also, the calculated subharmonic or-
der is found to vary with n in the manner predicted in
section 2.2.

In computing these results, the: friction curve has
been assumed to have a constant slope for all slipping
velocities. This is, of course, physically unrealistic, but
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IYig. 7. Solid line: stability threshold o« for the Helmholtz
solution to the Raman model, plotted against . Dashed line:
the subharmonic order for the least stable eigenvector, which
determines the threshold. Results are shown for all cases
p=1,..,10,g=p,..., 20

it is computationally convenient. It corresponds to the
case for which a procedure for calculating a rather
general set of periodic solutions has been presented, in
the companion paper [2]. Interestingly, the precise
form of the periodic solution does not matter when
this assumption is made, since variations of slipping
velocity do not make any difference to the calculation.
The only role of the underlying periodic solution is to
define the sequence of sticking and slipping states at
the bow=-string contact. As was described in section 2.3,
there s po difficulty in incorporating the effect of an
urbitrary friction curve into the formalism used here.
The term M?7 in eq. (15) would simply be replaced by
# product of 2p matrices, each having the form of
¢4, (14) but with varying values of { calculated from
the slope of the friction curve at the slipping velocity
approprinte to the underlying periodic solution at
eielt successive time step.

1t I8 straightforward to apply this procedure to peri-
odic solutions other than the Helmholtz motion. In
I¥ig, X, resulis are plotted in the same form as Fig. 7 for
thie stability threshold and critical subharmonic order,
for singlesslip-per-cycle solutions in which the slip
time is tuken to be p time intervals per cycle, rather
thun 2 p s in the Helmholtz motion. All that need be
changed to make this calculation is that eq.(15) is
replaowd by

M s M M2 0, (16)

To see more clearly what has happened to the stability
threshold when the slipping time is thus halved, Fig. 9
shows the ratio of the two cases. The threshold is
never decreased, but in some cases it is unchanged.

Fig. 8. Stability threshold and subharmonic order in the
same format as Fig. 7, for periodic solutions to Raman’s
model having a slip time equal to half the value for the
Helmbholtz motion.
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Fig. 9. Ratio of the values of « for the two cases shown in
Figs. 8 and 7.

The detailed pattern of change is seen to be rather
complicated, ranging up to rather more than a factor
of two for certain values of p and q.

It is of some interest to compare the results so far
with the most naive estimate of the behaviour of the
stability threshold, suggested again by the space-time
diagram. The threshold of stability occurs when the
effect of amplification at the slipping bow is just bal-
anced by dissipative effects. In the model as it has been
studied so far, dissipative effects occur only at the
terminations of the string. If all details of subharmonic
paths and so on are ignored, a crude estimate of the
condition of balance would be given by requiring that
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the strength of amplification, multiplied by the frac-
tion of the time in which it can happen, should equal
the strength of dissipation, multiplied by its time of
availability (which is all the time, at both ends of the
string). We might take the strength of amplification to
be 2, the total amount “created” in one interaction
like Fig. 3b, and the corresponding measure of the
strength of dissipation would be &. The condition then
yields

2 { x (fractional slipping time) ~ 2¢,
so that

o & 1/(fractional slipping time). {amn

(This is essentially the argument and result discussed
by Weinreich and Caussé [14]) For the Helmholtz
motion, the fractional slipping time is § = p/(p + g), so
that (17) is within a factor two of the result (13). This
simple prediction also follows the trend of the com-
puted results in Fig. 7. When the slipping time is
halved, (17) suggests that the threshold would be dou-
bled. Fig. 9 shows that this is at least of the correct
order of magnitude, but that there are quite large
variations for different values of f, and in most cases
the increase in threshold is rather less than this value.
However all the results so far can be thought of as
detailed variations superimposed on this simple be-
haviour, determining by the subtleties of subharmonic
paths and their interactions in eigenvector combina-
tions.

The simple argument suggests that no particular
regime of periodic oscillation is favoured over another
on grounds of stability, except in so far as their frac-
tional slipping times vary. In practice, however, the
Helmholtz motion is usually obtained more readily
than other oscillation regimes, and one might ask
whether stability considerations play any part in this
apparent preference. It is therefore natural to enquire
whether the detailed computed results reveal anything
which goes against the negative conclusion of the sim-
ple argument. Fig. 10 shows stability thresholds for a
range of values of # and of slipping time (assuming a
single slip per cycle). The values of p:q are 3:16,4:15,
5:14, 6:13 and 7:12 (so that the number of time steps
per Helmbholtz period is always equal to 38 within the
formulation in use here). For each case, slipping is
allowed for 1,2,3,..., 30 time steps.

The ideal Helmholtz cases are indicated by circles.
The figure shows that the stability threshold increases
monotonically as slipping decreases, for any given val-
ues of p and g. There are no local maxima, for the
Helmholtz motion or for any other slipping time.
However, the Helmholtz motion is seen to be special
in a certain sense: it lies at the edge of a plateau. There
is a sharp drop in the stability threshold for slipping

100

Fig. 10. Variation of stability threshold o in the Raman mod-
el, for a range of values of p and g and of slipping time. The
threshold is plotted on a logarithmic scale. The ringed points
mark the Helmholtz solution for each value of p:q.

times longer than the Helmholtz value, and there is no
immediate rapid increase for shorter slipping times.
This is not sufficient evidence on its own to account
for the apparent preference real bowed strings exhibit
for the Helmholtz motion, but within the limits of
validity of the Raman model it is at least suggestive.

2.5. The influence of torsional coupling

Torsional coupling, modelled in the simple way de-
scribed in section 2.1, dissipates energy from the trans-
verse waves on the string. It might be expected to have
similar effects to boundary dissipation, discussed in
sections 2.2—2.4, but as Weinreich and Caussé have
pointed out [14] its effects are actually rather more
complicated. Boundary dissipation is inescapable:
whatever combination of amplitudes on elemental
subharmonic paths one chooses, there is always some
loss. Torsional coupling, on the other hand, is selec-
tive. As will be seen shortly, it is possible for cancella-
tion to occur when the waves incident on the two sides
of the sticking bow are equal in amplitude.

It is convenient to start with an example in which
there is no boundary damping, Table 2 gives the mag-
nitudes and phases of the eigenvalues of the transfer
matrix, for perturbations to an ideal Helmholtz mo-
tion with p=2, ¢g=5, A=1, (=001 and y=09.
(Only one of each pair of repeated eigenvalues is listed.)
This value of y represents a quite modest level of cou-
pling to torsion [8), but it is sufficient to produce very
large decay rates for almost all perturbation eigenvec-
tors. The exceptions all correspond to “unsubharmon-
ic” patterns, with eigenvalue phases of zero. There are
two pairs of these, one being exactly neutrally stable
(magnitude unity) and the other being unstable.
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The neutrally stable pair of eigenvalues correspond
to a perturbation pattern which is easily written down.
The form is quite general, not restricted to these par-
ticular values of p and ¢. Consider a pair of vectors

v, =y —1—vvn..J,

vy=[—n,—vv,m—n—vv.J (18)

It is easily verified that when A = 1, for any matrix M,
of the form defined in eq. (14)

Miv,=v,, Mv,=v,. 19)

Identical results hold for the transformation matrix
during sticking, M, . So any vector of the form v, is an
eigenvector of any matrix formed from an even num-
ber of products of matrices M; and M,, with eigen-
value unity. This it represents a neutrally stable per-
turbation to any periodic solution whatever to the
Friedlander model (i.e. the Raman model with 4 = 1).
It is easy to see what this means physically: the vector
v, always presents waves of equal magnitude and op-
posite sign incident from the two sides of the bow. As
Fig. 11 shows, when the interactions of Fig. 3 are thus
superimposed, the result is as if the bow had not been
there, and the two waves carry on unchanged. This is
oqually true of slipping or sticking.

The unstable pair of “unsubharmonic” eigenvalues
in Table II correspond to what Weinreich and Caussé
have called “between-the-raindrops motion” [14]. This
also involves cancellation at the bow in the manner
shown in Fig. 11, but this time it is selective. The
perturbation pattern is such that equal incident waves
wlways arrive at the sticking bow, so that there is no
loss into torsional waves, but the incident waves at the
slipping bow are not equal, and so there is some am-
plification. The result is a pattern which is unstable in
the presence of arbitrarily strong dissipation into tor-
sional waves at the sticking bow. It requires some
houndary dissipation to stabilise it, in the manner
discussed in previous subsections.

Fig, 11, Cangollation of the effects of torsional coupling at
the aticking bow when the incident perturbation amplitudes
from the two sides have equal amplitude but opposite sign.
A similar picture applies to the slipping bow under the same
clroumstnoes.

Table II. Results for the Helmholtz solution to Raman’s
model with p=2,q=5,4=1,{=0.01,y=09. Only one of
each pair of repeated eigenvalues is shown.

0.8040 0.5000
0.8040 0.2479
0.8040 —0.2479
0.8053 0.3321
0.8053 —0.3321
1.0000 0

1.0116 0

It is important to note that “between-the-raindrops
motion” is not possible for § = 1/n. The Raman model
gives a constraint on the average velocity at the bowed
point, which can only differ very slightly from zero (for
values of A close to unity). The underlying periodic
solution will satisfy this constraint, so any perturba-
tion pattern must give an average velocity at the
bowed point of zero. For “between-the-raindrops mo-
tion” the perturbation at the bow is only non-zero
during slipping, so there must be at least two different
values of velocity at the bowed point during an
episode of slipping, at.least one of which must be
positive and one negative (unless the perturbation ve-
locity at the bow is identically zero at all times, which
is the uninteresting case discussed above, neutrally
stable when A=1). For §=1/n, the Raman model
allows only one value of velocity during slipping, and
so there can be no “between-the-raindrops”™ pattern.
This argument is confirmed by the analysis in section
2.2: only one eigenvalue with zero phase was found
when f = 1/n, and that was shown to correspond to
the uninteresting case with no amplification at the
slipping bow. An example of a growing instability
with a “between-the-raindrops” pattern for g+ 1/n
will be shown shortly.

More detail of the behaviour of the eigenvalues in
the presence of torsional coupling may be revealed by
a root-locus plot. Fig. 12 shows the paths in the com-
plex plane of all eigenvalues, as y is decreased from
unity to 0.6, all other parameters being the same as
for the example in Table II. Initially, all eigenvalues
are on or just outside the unit circle, since there is
no dissipative mechanism operating. Their positions,
around the unit circle show the expected mixture of
first, second, third and fourth subharmonics, since
1/4 < p/(p + q) < 1/3. As y decreases, all eigenvalues
except those with zero phase move rapidly inwards as
they are damped by torsional coupling. Once the loss
rate per cycle ceases to be a small quantity, the phases
cease to correspond accurately to subharmonics. The
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Fig. 12. Root-locus plot in the complex plane, for the eigen-
values of the stability analysis for the Helmholtz solution to
Raman’s model with p=2,g=5,A=1and { =0.01, as y
varies from unity to 0.6. The unit circle is shown.

eigenvalues with zero phase are unaffected by the val-
ue of y, as just described.

Computations can be made of the stability thresh-
old for a range of values of f§, in much the same way
as described in section 2.4. Results are shown in
Fig. 13, for y = 0.9. The qualitative features are just as
would be expected from the discussion above. For
B = 1/n, the threshold is governed by the least stable
“between-the-raindrops” perturbation pattern. The
value of the threshold is governed by a balance be-
tween amplification at the slipping bow and boundary
dissipation, just as in the cases without torsional cou-
pling. As before, it depends only on the ratio o = {/e.
The order of magnitude is much as before, and for

200
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Fig. 13. Stability threshold o for the Helmholtz solution-to
the Raman model with y = 0.9, plotted against § in the same
format as Figs. 7 and 8, except that the vertical scale is loga-
rithmic here to accommodate the large range of values.

some values of p and ¢ the value is exactly the same
since the same perturbation pattern is responsible.

At the points § = 1/n, things are very different. To
calculate the threshold value, amplification at the slip-
ping bow is increased until an eigenvalue crosses the
unit circle, but now this has to be one of the eigenval-
ues strongly affected by dissipation from torsional
coupling. Very large amplification is thus needed, and
the stability threshold is very high. The parameter « is
no longer really appropriate to characterise it, since it
is governed by the balance of amplification and tor-
sional loss, boundary dissipation being a small pertur-
bation. For the purpose of Fig. 13, « is nevertheless
used, for comparability of the rest of the figure with
Figs. 7 and 8. In practice, the very high thresholds of
stability at the points 8 = 1/n mean that stability is
simply not an issue there. Other factors influencing the
maximum and minimum bow force at and near those
points are far more important [2], and if the Helmholtz
motion is possible at one of these points, it will be
stable in the presence of any appreciable torsional
dissipation.

Finally, it is interesting to compare these results for
the stability of periodic solutions of Raman’s model
with the results of time-marching transient simulation.
The natural parameter to vary in such a simulation in
order to explore thresholds of stability is the bow force
[ Wetakethecasep=2,9=35,Y,=2,4=099 and
y = 0.9. A linear friction curve during slipping is as-
sumed, so that { is directly proportional to bow force,
with no dependence on the value of slipping velocity.
The limit of sticking friction is assumed to be 0.8 f,,
and the friction/velocity relation during slipping is
taken to be

f@) = £,103 +0.010]. (20)

The threshold of stability for the Helmholtz motion is
then found to be f, = 1.75, using the analysis method
described above.

For f§ & 1/n, as in this example, we might guess that
the unstable growth of a “between-the-raindrops” pat-
tern superimposed on an initial Helmholtz motion
will eventually terminate when the negative velocity
perturbation becomes large enough to cause sticking
when slipping had been assumed. The Helmholtz mo-
tion might then give way to a periodic regime with a
shorter slipping interval (whose stability could in turn
be investigated). This sequence of events is precisely
what does occur in the simulation. This is illustrated
in Fig. 14, which shows several two-period “snap-
shots” from a long simulation. The simulation is ini-
tialised with a Helmholtz motion with a very small
level of superimposed perturbation, as shown in
Fig. 14a. The bow force is given the value 2.0, a little
above the stability threshold.
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Fig. 14. Four stages in a transient simulation of Raman’s
model with p=2,4g=35,Y,=2,A=099 and y=09, and a
bow force f, = 2.0, compared with a stability threshold of
1.75. a) Approximate Helmholtz motion; b) growth of “be-
tween-the-raindrops” perturbation; c) growth of the pertur-
bation to large amplitude; d) stable periodic motion with
slipping for only one time step per period. Scales are the same
in all four cases.

After a few hundred period-lengths, the Helmholtz
motion has evolved into the form shown in Fig. 14b.
The two values of velocity during slipping are moving
apart, one increasing while the other decreases, in the
expected pattern for “between-the-raindrops” motion
as described above. The growth continues to large
amplitudes, as shown in Fig. 14¢c, and shortly after
this stage the string ceases to slip in the first of the two
nominal slipping intervals of the original Helmbholtz
motion. The velocity waveform now settles down to a
stuble periodic solution with just one interval of slip-
ping per cycle, shown in Fig. 14d. When the stability
threshold is calculated for this final motion, it is found
to require bow force greater than 77.2, which is above
the Schelleng maximum bow force for this problem
[4, 7] and so is irrelevant. This large value arises be-
cruse “between-the-raindrops” perturbations are not
possible now there is only one slipping interval per
eyele, us explained above.

X Stability of solations to rounded-corner models

A1 Roformulation of the transformation matrices

The Ramun model is very convenient for analytic in-
vestigation because of its simplicity, but it certainly
doey not describe the behaviour of real bowed strings
very accurutely [2]. A significant gain in realism is
minde when e “rounded-corner model” is used in its

place. Here, the delta-function reflections of the Ra-
man model are replaced by convolution with a pair of
reflection functions, which represent the combined ef-
fects of propagation and boundary reflection [6, §]. A

- wide range of different physical models can be in-

cluded under this heading, by changing the details of
these reflection functions.

It would obviously be desirable to be able to ana-
lyse stability of periodic solutions to these models.
This can be done by a similar approach to that em-
ployed for Raman’s model, but the formulation of the
state vector and its transformation matrices must be
changed. The immediate link between elements of the
state vector and variation with position along the
string is lost, but the new formulation is not only more
general, but also more compact. When applied to the
Raman model it yields a state vector, and correspond-
ing matrices, with dimension (p+ ¢) rather than
2(p + q), which has obvious advantages in computa-
tional efficiency.

The entries in the new state vector are simply the
past history of the outgoing waves from the bowed
point in the two directions. There must be enough of
these to allow for the delay on the journeys to the
respective ends of the string and back, plus enough
extra history to allow the convolution integrals to
be carried out (in discrete form) with the desired
reflection functions. We may write this vector
[..[9, [, [P RP RY,RY, .. ] at the nth time step,
where the entries describe outgoing perturbation ve-
locity amplitudes to the left and right of the bowed
point with the obvious convention. (This is a different
naming convention from the earlier approach, based
on the space-time diagram, where the positional coor-
dinate along the string ran vertically, and directions
were thought of as “up” and “down”. It corresponds
to the usage in other accounts of rounded-corner
models.)

The transformation matrix for a single time step
now has to represent two things. All entries in the state
vector except L% and R simply propagate outwards
by one place: the matrix entries represent two delay
lines. The entries [P and RY” are calculated by
combining two effects. First, the incoming waves from
the left and right sides of the bow are calculated by
(discrete) convolution over the stored values. Second,
these are combined to calculate the new outgoing
waves according to the interactions shown in Fig. 3,
exactly as in the earlier formulation. Again, different
matrices are needed depending on whether the time
step in question corresponds to sticking or slipping at
the bowed point, but they have very similar forms. To
illustrate, consider first the example used in eq. (14) to
illustrate the earlier approach: the Raman model with
p =2, g = 3. When the bow-string contact is slipping,
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the transformation is

g+n 0 100 0 Ly
JSlagy —AL 000 —A(1+0|[L?
RP*D|=| -4+ 000 —AL RY
Rg+D 0 010 0 RY
RE+D 0 001 0 R
21)

while the corresponding transformation during stick-
ing has { replaced by — 7y in the matrix, just as before.
The “convolutions” in this case each consist of single
terms, the four terms containing the factor 4. With
extended reflection functions, there would be non-zero
entries in terms neighbouring these four (involving the
discretised values of the reflection function), and it
would be necessary to have more of the history stored
in the state vector. The unity entries would then ex-
tend to the new limits of the matrix along the subdiag-
onal (in the lower portion of the matrix) and superdi-
agonal (in the upper portion), to simulate the delay
lines for this extra stored history.

3.2. Results with narrow reflection functions

A thorough study of the stability of periodic solutions
to rounded-corner models would be a major under-
taking, and lies beyond the scope of this article. For
the present, just one illustration of the application of
the approach will be given. The natural first step away
from the Raman model is to consider reflection func-
tions which are of non-zero width, but still narrow
compared with the period of the motion [6, 7]. It has
been shown that the kernel function necessary to cal-
culate periodic solutions does not then depend (to a
first approximation) upon the details of the reflection
function, but only on a measure of its width [2]. So we
will choose a very simple test case, in which the two
reflection functions are identical (apart from their dif-
ferent time delays), time-symmetrical, and with only
three non-zero values at the level of discretisation be-
ing employed. For the case corresponding to eq. (21),
the transformation matrix equation during slipping is
then

(29 [ o 1 0 0
gy 0 0 1 0
o+ ~al - —6{ 0
Ri*U|=]—-6c(1+) A1+ —a(1+0 O
R+ 0 0 0 1
RE+D 0 0 0 0
R¢*Y] [ o0 0 0 0

where [0, 4, 0] are the sampled values of the reflection
functions. There is a corresponding matrix during
sticking, as in previous cases. For a model which sat-
isfies the physical constraint that the string eventually
returns to its undisturbed position following any tran-
sient excitation, the values of the reflection function
will satisfy

Ad20=1. (23)

As in previous sections, we first illustrate the results
of this procedure by showing the full set of eigenvalues
for a specific example. A case has been chosen which
is fairly similar to that shown in Table II and Fig. 12.
Larger values of p and g are needed now, to provide
sufficient resolution in time to allow a reasonably real-
istic width of reflection functions to be represented.
The chosen case has p=6, ¢ =16 and { = 0.01, and
the reflection functions satisfy eq. (23) with the value
o = 0.05. Slip time is assumed to be equal to p. The
magnitudes and phases of all 24 eigenvalues (corre-
sponding to the dimension of the state vectors) are
listed in the first two columns of Table III, when tor-
sional coupling is not included (i.e. y = 1).

The results show some features which are by now
familiar from the earlier investigation. The phases of
the eigenvalues all correspond quite closely to subhar-
monics, with orders one, two and three. Among the
eigenvalues with zero phase, corresponding to “un-
subharmonics”, there is one which is unstable for this
combination of parameters, corresponding to Wein-
reich and Caussé’s “between-the-raindrops” motion,
as before [14]. A feature of these results which differs
from those of Raman’s model is that already, even
with no torsional dissipation, many of the eigenvalues
have magnitudes well below unity. There are even
some with magnitude zero, but these probably arise as
an artefact of the particular formulation of state vec-
tor in use here and do not seem to be of great interest.

The influence of torsional coupling is examined
next. Fig. 15 shows a root locus plot for the example
just studied, showing the paths of all eigenvalues in the
complex plane as y is decreased from unity to 0.6 in
20 steps. The full set of eigenvalues in the final state,
with y = 0.6, is listed in the third and fourth columns

0 0 0 | [
0 0 0 o
—o(14+0 -2+ —a(1+ 0| | 1D
_GC __Ilé' __O.C R(ln) (22)
0 0 0 Ry
1 0 0 RY
0 1 o |[rY]
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Table 111, Results for a rounded-cotier model with o = 0.05,
A=1090, p =6, ¢ =10, slip time per eyvle oqual to p, and
¢ =001, for two vluen of 3.

04
02
01
005

0.02

2

Sy,
© 2‘1}77 e

S e 4B 5;-,7q —

1.001 0 1.002 0
0.968 0.334 {1.965 0
0.968 -0.334 0,912 0
0.964 0 0.890 0
0.911 0 0872 0
0.910 0.500 0.785 0
0.890 0 0.74) 0
0.871 0 0,729 0
0.871 0.334 0.702 0
087 —0.334 0.678 0
0,781 0 0.640 0
0,758 0.334 0.193 0.266
0.758 —0.334 0.193 0.266
0.743 0 0.183 0.500
0.728 0 0.174 0.206
0.727 0.500 0.174 -0.2606
0.701 0 0.151 0.200
0.679 0 0.151 - 0.266
0.675 0.334 0.146 0.500
0.675 —0.334 0.135 0.2606
0.640 0 0.135 ~0.266
0,000 0 0.000 0
0.000 0.500 0.000 0
0,000 0.500 0.000 0.500
10
05 1
0 L
-05 1 .
107 |

Iig. 15. Root-locus plot in the complex plane for the 24
cigenvalues of the stability analysis of a periodic solution to
the simple rounded-corner model described in the text, hav-
ing p=6, g=16 and { =001, reflection functions which
satisfy eq. (23) with the value ¢ = 0.05, and a slip time equal
to p, showing results as y is decreased from unity to 0.6 in 20
steps. The unit circle is also shown.

Fig. 16. Variation of stability threshold ( in the rounded-cor-
ner model described in the text, for a range of values of p and
¢ and of slipping time. The threshold is plotted on a logarith-
mic scale.

of Table III. The general pattern is similar to that seen
carlier for Raman’s model, although the details are of
course different. All eigenvalues with non-zero phases
are heavily damped by the torsional coupling, but the
ones with zero phase are virtually unaffected. One
remains unstable, and even appears to have become
slightly more unstable, although this may be an arte-
fact of computational inaccuracy.

Next, we examine the variation with p, g and slip
time. Results have been computed for cases -with
piq=13:19, 4:18, 5:17, 6:16, 7:15 and 8:14 — it is
necessary to keep p + g constant, so that the width of
the reflection functions remains the same for com-
parability. The value ¢ = 0.05 is again used to specify
this width. In each case, the slipping time was allowed
to range from 2 to 10 time steps per period. (Note that
slipping time plays a rather different role in rounded-
corner models from that in the Raman model: the
slipping time of the Helmholtz motion now depends
on the width of the reflection functions and the value
of the bow force, and must be established in any par-
ticular case by careful solution of the periodic motion
problem [2].) It is sufficient for this preliminary inves-
tigation to show only results without torsional cou-
pling.

Fig. 16 shows a plot of the threshold value of { for
instability, in the same format as Fig. 10, which shows
a corresponding result for the Raman model (al-
though with somewhat different parameter values).
The patterns revealed by the two figures are quite
different. With reflection functions of finite width,
there is no obvious sign of a “cliff edge” marking the
slip time of the Helmholtz motion for the various
values of p: g, which was the most conspicuous feature
of Fig. 10. Fig. 16 is in fact rather featureless. The
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Table IV. Ratio of stability thresholds for two different
rounded-corner models, for a range of values of p, g and slip
time per cycle. The numerator model has ¢ =0.05 and
A =0.90, the denominator model has ¢ = 0.02 and 1 = 0.96.

2 1.867 2842 2614 3.132 2347 2.861
3 2721 3119 2057 3.074 2368 2935
4 2.687 2874 2282 2236 2414 2500
5 2593 2718 2583 2459 2451 2402
6 2.588 2616 2563 2617 2386 2465
7 2563 2579 2584 2663 2523 2.541
8 2550 2557 2586 2595 2547 2.561
9 2546 2548 2560 2.586 2556 2576
10 2539 2537 2545 2549 2591 2.589

threshold value, on this logaritfffnic scale, decays
rather smoothly with slip time, interrupted ocasional-
ly by small increases.

Finally, this calculation has been repeated with re-
flection functions which are narrower, with ¢ = 0.02.
The ratios of the stability thresholds for the two mod-
els are listed in Table IV. It is very suggestive that in
most cases the value is close to 2.5, the ratio of the two
reflection function widths. Any detailed interpretation
of these results would need to be made in the context
of the discussion in the companion paper [2] of the
variation with slip time of the underlying periodic
solution to this rounded-corner model. Such detailed
interpretations would require a more lengthy discus-
sion than is appropriate in this study, and the issue
will not be pursued further here.

4. Conclusions

Methods have been presented for analysing the stabil-
ity of periodic solutions to Raman’s model and the
rounded-corner models of bowed-string motion.
These have been illustrated with representative exam-
ples, and the physical mechanisms responsible for sta-
bilising and destabilising the various possible periodic
solutions have been investigated. In the case of Ra-
man’s model, a fairly complete picture may have been
established, although there are certainly opportunities
for further study. In the case of the rounded-corner
models, only a very preliminary account has been
given, and much might be learned from a more thor-
ough investigation.

One particular avenue which might yield interesting
results would involve combining this analysis of sta-
bility with the systematic simulations described else-
where [7]. These have employed large-scale parallel

computation to explore the regions of parameter
space within which the Helmholtz motion arises from
a given initial transient. It would be possible to take
the end state of such a set of simulations, and for each
point for which a periodic solution has been achieved,
to carry through a stability analysis using the particu-
lar form of that periodic solution. That would lead to
a parameter-space map of the degree of stability of the
Helmholtz motion, and the other periodic solutions
encountered. It. might shed further light on the relative
robustness of the different oscillation regimes within a
given model, and on the variations of this pattern
between models.
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