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Summary 

Some aspects of bowed string vibration are discussed with particular 
emphasis on a regime which is sensitive to details of the friction-velocity 
characteristics. Apart from its intrinsic interest this study may shed light 
on the behaviour of other friction-driven oscillators since the rather success- 
ful theoretical modelling developed for the bowed string may be applicable 
to other problems. Conversely, bowed string studies may be able to benefit 
from the interaction with other work on friction. 

1. Introduction 

The bowed string is perhaps unique among frictional oscillators in that 
the oscillations are actively sought, rather than being an undesirable thing 
to be avoided. This engenders a particular attitude to theoretical modelling. 
If one is modelling a phenomenon only in order to find ways of preventing 
it, one may not be very concerned about details of the behaviour. Players 
of bowed string instruments, however, are very interested in the fine details 
of the string motion and in how these can be controlled to provide a variety 
of musical expression. Many of these details are now understood quite well 
as a result of a long history of theoretical and experimental study of the 
problem. This makes the bowed string probably the most thoroughly under- 
stood frictionally driven oscillator and, while much of this work exploits 
special features of the problem, it seems probable that some of the insights 
gained will have applications elsewhere. Space does not permit a comprehen- 
sive review of the subject here and we concentrate on some aspects likely to 
be of wider significance. 
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2. Model formulation 

We first derive the basic equation describing the problem under the 
simplest idealizations. We suppose that the string is bowed at a single point 
along its length with constant bow speed ub and normal force fb. At the 
bowed point let the string’s transverse velocity be u(t) and let the frictional 
force be f(t), where t is the time. These two quantities are related in two 
distinct ways. First, we shall suppose that the frictional force has a function- 
al dependence on the relative velocity of the bow and string of the type 
indicated by the heavy curve in Fig. 1. Secondly, f(t) and u(t) are connected 

Fig. 1. Heavy full curve: a typical non-linear characteristic f(u) curve for friction in a 
bowed string as usually idealized. The sloping straight lines show a graphical construction 
to solve eqn. (3): (i) at time t for a general model; (ii) at all times for an infinitely long 
string. If the sloping line falls in the shaded region it has more than one intersection with 
the heavy curve and hysteresis occurs as described in the text. 

by a complicated linear dissipative system, the string and its terminations. 
Supposing this system to have an impulse response function g(t), we are 
immediately led to the non-linear integral equation 

u(t) = $ g( t’)f{ u( t - t’)} dt’ 
0 

Equation (1) is by no means special to the string; it describes any system 
driven by friction (modelled as a functional f-u relation) applied at a point. 
Different linear systems are characterized by different impulse response 
functions g(t)_ 

Our first concern is with the behaviour of g(t) for very small times. The 
string, in common with many other simple wave-bearing systems which do 
not have a finite mass concentrated at the drive point, has an initial Dirac 
delta function contribution and it is convenient to separate this from the 
remainder of g(t) by writing (see ref. 1 for further discussion) 



g(t) = $ Y6(t) + gh(t) 
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(2) 

where Y is the characteristic admittance of the string and gh(t) is finite in 
the vicinity of t = 0 (and of course zero for t < 0). Equation (1) then yields 

u(t) = $ Yf{u(t)] + Uh(t) (3) 

where 

w 

Uh(t) = s gh(t')f{U(t - t’)) dt’ 
0 

(4) 

The function Uh(t) depends only on the past history of the motion; it repre- 
sents the net effect of reflections arriving back at the bowed point at time t. 

If the past history, and therefore U,,(t), is known then eqn. (3) deter- 
mines u(t) and f(t) by the graphical construction shown in Fig. 1: they are 
given by the intersection of a straight line of slope 2/Y and intercept uh(t) 
(e.g. the line labelled (i) in Fig. 1) with the friction characteristic f(u). We 
now see that the vertical (sticking) portion of the characteristic (heavy 
curve) presents no problem for this model: the intersection is perfectly 
well-defined (for example with the straight line labelled (ii)). A problem can 
arise, however, if the shape of the f(u) curve allows a region like the one 
shaded in Fig. 1. If Uh(t) lies in the range of the u axis within such a shaded 
region there is an ambiguity in the determination of u and f from uh since the 
line then intersects the curve at three points rather than one. The resolution 
of this ambiguity has been shown to be the one which might have been 
expected, a hysteresis cycle involving the outer two of the three intersections 
[ 11. The middle intersection is unstable. and never occurs. This hysteretical 
behaviour has important observable consequences to which we return later. 

Before considering the influence of gh(t) on the motion of the string, 
we note in passing that we have already solved the problem in one limiting 
case. For an infinitely long string, or one with such high damping that no 
reflections return with significant strength, we have uh = 0 at all times. Thus 
bowing an infinitely long string cannot make it oscillate; the string simply 
moves steadily in the way determined in Fig. 1 with uh = 0 (the sloping line 
labelled (ii) in Fig. 1). Whether it sticks (as here) or slips depends upon the 
shape of the f(u) curve and the value of the bow speed ub. Only if uh = 0 
lies in the ambiguous region can anything remotely interesting happen: with 
a choice of two stable states available it might be possible for the string to 
be switched occasionally between sticking and slipping by perturbations, for 
example, arising from spatial irregularities in the rosin on the bow. 

If a finite string is subjected to a transitory disturbance in f(t) then it 
will eventually come to rest in its original position. This means that the 
integral over all time of the function g(t) must vanish. The integral of g,(t) 
over all time thus has the value -Y/2. During a steady oscillation f(t) has a 
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positive mean value (for otherwise the f(u) of Fig. 1, and the fact that u must 
be less than ub for at least part of the cycle, would imply a negative mean rate 
of working) and so it follows, by taking the time average of eqn. (4) and 
reversing the order of integration, that uh(t) has a negative mean value. This 
argument applies, of course, to many other physical systems as well. 

3. Raman’s classification 

For the next stage of the argument we use a special feature of the 
behaviour of stretched strings. Waves on a string travel approximately 
nondispersively, so that in modal terms the natural resonance frequencies 
are approximately harmonically spaced. This feature is responsible for the 
most remarkable feature of the string as a frictional oscillator, its pitch 
stability. The vibration period of most stick-slip oscillators (squeaking 
doors, for example) varies strongly with the imposed conditions such as 
normal force and speed of relative movement. If that were true of the bowed 
string the violin would hardly be a viable musical instrument. However, 
while sufficiently drastic changes in bowing parameters can produce large 
changes of pitch (or indeed raucous, more-or-less pitchless, sounds), there are 
usefully wide ranges of these parameters in which the pitch is very nearly 
constant. 

This constant pitch closely matches that of the string when plucked 
and this observation provided the key to the earliest extensive theoretical 
study of the vibration regimes of the bowed string by Raman [2]. The 
essence of his argument was that if the result of frictional driving is to 
produce a periodic oscillation with all harmonic components close to reso- 
nances of the free highly resonant system then the friction force f(t) must 
be more-or-less constant throughout the cycle. If it were not, the variations 
in force with the string’s natural frequencies would evoke a resonant res- 
ponse rather than a steady vibration. (Of course, on a real lossy string some 
force fluctuations are needed to compensate for dissipation but Raman’s 
argument is evidently a good first approximation.) For a friction charac- 
teristic having the general shape shown in Fig. 1 a given constant force 
allows u(t) to take just two values, one slipping and one sticking. Thus to a 
first approximation the motion must consist of an alternation between 
these two velocities in some pattern. This led Raman to an elegant kinematic 
argument which allowed him to classify the many different non-linear 
vibration regimes observed in the laboratory in terms of the number of 
“comers” or velocity jumps travelling back and forth along the string. 
Each of these jumps has the same magnitude given by the difference of the 
two allowed velocities. 

The simplest such motion is actually a good approximation to the regime 
which violinists usually want. This regime was first described by Helmholtz 
[3] and is illustrated in Fig. 2. A single comer shuttles around the visible 
envelope of the string’s vibration triggering transitions between sticking and 
slipping each time it passes the bow. There is thus one sticking and one 
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Fig. 2. The simplest motion of a bowed string first observed by Helmholtz. The transverse 
scale is exaggerated. The visible envelope of the motion is shown as a broken curve 
together with two “snapshota” of the moving string at different instants. The position 
and direction of the bow are indicated and also the directions of travel of the Helmholtz 
corner. The string is sticking to the bow at both the instants shown. 

slipping period per cycle. The timekeeping by the Helmholtz comer is 
responsible for the pitch stability mentioned above. It is now clear why 
the non-dispersive nature of wave propagation on a string is important. If 
the comer “spreads” too much during its travel it will become ineffective 
at Gregg preciseIy timed t~sitions between sticking and slipping. An 
important area of research into the bowed string is to map out the region of 
the player’s parameter space in which the Helmholtz motion, or some 
approx~ation to it, can be obtained. Space permits no discussion here but 
see refs. 4 - 6. 

Raman’s argument for deducing the character of the motion in the 
many observed regimes does not seem very closely tied to the integral 
equation formulation of the problem given above. For the present, we can 
merely note that the particular forms of gh(t) for a range of fairly realistic 
string models allows a very efficient numerical simulation of the dynamical 
system represented by eqn. (3) [ 1, 71 and that such simulations confirm 
Raman’s classification as a good first approximation. They also confirm a 
second line of enquiry, initiated by Raman, in which string dissipation was 
modelled in an idealized way [4, 51, 

An interesting issue arises here concerning which string models to use. 
It turns out to be vital not to.use the usual “textbook” model of a lossless 
rigidly anchored perfect string since that model gives very unrealistic results 
[7 - lo] - principal among them the fact that all periodic solutions are 
unstable! The more realistic models used in our simulation studies, altema- 
tively, seem able to reproduce nearly all the known features of the behaviour 
of real bowed strings. It turns out that the playability of real strings depends 
crucially on their torsional degree of freedom [7, lo]. 

4. Hysteresis and the flattening effect 

We end this brief survey of work on the bowed string with a discussion 
of an interesting phenomenon which arises when we ask what effect the 
hysteresis described in Section 2 has on the Helmholtz motion in a realistic 
string. This phenomenon is interesting in the present context because it 
depends critically on some details of the frictional behaviour whereas the 
kinematic argument used by Raman treats friction merely by seeking free 
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motions of an ideal string which are not inconsistent with the presence of 
friction at the bowed point. 

On a real string there will be some rounding of the Helmholtz “corner” 
during its travel along the string. The rounding is due to both dispersive and 
dissipative effects in the string itself and to reflection processes at the ends 
of the string. This corner-rounding effect can be represented in the model by 
the convolution of the outgoing velocity waveform with some kind of hump- 
like function to give the (delayed) incoming velocity wave at the bow. (This 
approach lies at the heart of the efficient simulation algorithm mentioned 
above). 

We now consider the ~teraction of a rounded ~elmholtz ‘comer with 
friction at the bow during the processes of release and capture. Detailed 
views of the waveforms of uh( t) and u(t) during these processes are shown in 
Fig. 3(a), with hysteresis in operation. It will be seen that the interaction 
implied in Fig. 1 produces “comer sharpening” which for a steady state 
oscillation must balance the comer-rounding effect just described. The 
details of that balance determine the oscillation period and waveform 
u(t). The steady vibration waveform of v(t) incorporating the interactions of 
Fig. 3(a) is shown in Fig. 3(b). The waveform was obtained for a particularly 
simple (though rather unrealistic) simulation of bowing at the midpoint of 
a string with symmetric terminations. Figure 3 is taken from ref. 7 and is 
discussed in much more detail there. 

(a) -t 

Fig. 3. Velocity waveforms from a simple simulation of a bowed string showing (a) 
waveforms of u(t) (full curve) and uh( t) (broken curve) during the processes of release and 
capture and (b) the resulting steady oscillation waveform of u(t). The model used for 
this simulation has a symmetrically terminated string bowed at its midpoint, detail8 are 
given in ref. 7. The period of oscillation here is longer than the string’s natural period by 
some 5%, Le. nearly a semitone of flattening. 
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The oscillation regime illustrated in Fig. 3(b) is controlled by the 
combination of comer sharpening at the bow, comer rounding during travel 
to one end of the string and back and hysteresis. The essential factor to note 
is that hysteresis makes the processes of capture and release asymmetrical. 
This happens in such a way that there is a net delay in the round trip time 
of the Helmholtz comer during a steady state oscillation. In other words 
when hysteresis is significant the note plays flat. The magnitude of the effect 
depends on the strength of the comer-rounding processes and on the width 
of the ambiguous (shaded) region in Fig. 1 which will increase with in- 
creasing fb. 

The flattening effect is readily demonstrated on a violin as the normal 
force between bow and string is increased (use a low bow speed and play a 
high G string note for the strongest effect). It should be noted that such 
flattening is quite counter intuitive; as the force is increased, one might 
expect the pitch to rise, not fall, either because the string tension is slightly 
increased or because of heterodyning effects of the kind extensively dis- 
cussed by Benade in the context of brass instruments [ 111 (since the over- 
tones of the string will be systematically higher than those of a harmonic 
series because of finite bending stiffness). Nevertheless, the pitch falls and 
hysteresis explains the observation and so this is presumably a real effect. 

The precise magnitude of the flattening, as well as the details of some 
other vibration regimes whichwe do not have space to discuss [ 6, lo], depend 
strongly on the shape of the friction characteristic. Thus for complete 
understanding we need to know f(u). This requires measurements and an 
understanding of the physics of friction mediated by rosin. Some steady 
sliding measurements have been made [5], suggesting a curve like that 
sketched in Fig. 1. However, these measurements perhaps beg the question 
of the extent to which friction can be described simply by a single function, 
e.g. f(u). More work is needed in this area. One piece of information is 
available immediately. One may readily verify that it is almost impossible 
to draw a bow across a string without vibration starting. It appears that the 
state of steady slipping is unstable. In the context of the simple friction curve 
model this is easily shown to imply that the slipping portion of the friction 
curve has a positive slope everywhere, as indicated in Fig. 1 [8, 91. The 
instability must still apply to more sophisticated models of friction which 
might prove necessary. Ideally, what is wanted are methods of accurately 
measuring friction in a highly transient dynamical context. Some ideas 
on this subject have been floated [lo] but little work has yet been done to 
our knowledge. 

References 

1 M. E. McIntyre and J. Woodhouse, Acustica, 43 (1979) 93. 
2 C. V. Raman, Indian Assoc. Cult. Sci. Bull., 15 (1918) 1. 
3 H. Helmholtz, On the Sensations of Tone, Dover Publications, New York, 1945 

(English translation of the German edition of 1877) p. 387. 



182 

4 J. C. Schelleng,J. Acoust. Sot. Am., 53 (1973) 26. 
5 L. Cremer, Physics of the Violin, Massachusetts Institute of Technology Press, Cam- 

bridge, MA, 1984, Section 4.6, 5.8. 
6 M. E. McIntyre and J. Woodhouse, J. Catgut Acoust. Sot., 42 (1984) 18 - 21. 
7 M. E. McIntyre, R. T. Schumacher and J. Woodhouse, J. Acoust. Sot. Am., 74 

(1983) 1325. 
8 F. G. Friedlander, Proc. Cambridge Philos. SOL, 49 (1953) 516. 
9 J. B. Keller, Commun. Pure Appl. Math., 6 (1953) 483. 

10 M. E. McIntyre, R. T. Schumacher and J. Woodhouse, Acustica, 49 (1981) 13; 
Acustica, 50 (1982) 294. 

11 A. H. Benade, Fundamentals of Musical Acoustics, Oxford University Press, New 
York, 1976, Section 20.2. 


