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ABSTRACT

The author will discuss the direction and goals of
his research into applications of fractal processes to
automated musical composition. Factors relating to
the choice of fractal methods, the application of
geometric formalisms to music, and the aesthetic
implications of self-similarity will be discussed.
Tape recorded examples of musical fractals will be
played. The report will conclude with a summary
of probiems encountered and challenges presented
to future research in this area.

INTRODUCTION

Fractal geometry has proven itself 2 remarkable
formal model for natural organic and inorganic
processes. Among the many applications
discovered by the leading researcher in the field,
Dr. Benoit Mandelbrot of the I.B.M. Thomas J.
Watson Research Centre, and described in his
casebook’ "The Fractal Geometry of Nature” are:
the growth of trees and tree like structures; fluid
turbulence; stuctural details in Saturn's rings;
complex organic spectra; noise and data
transmission errors; stock market trends: the
structure of coastlines; molecular Brownian
motion; and the distribution of matter in galaxies.
One of the reasons that fractal geometry is so
successful as a model for these phenomenon is a
remarkable quality known as ‘'self-similarity’.
Simply stated, this term indicates that similar
patterns are repeated on many levels of structure
throughout the fractal object.

SELE-SIMILARITY IN MUSIC

Music more than any other art incorporates self-
reference as an essential feature; indeed a good
case can be argued that a piece of music is entirely
and exclusively self-reflexive, acquiring meaning
through internal coherence only and not through
reference to anything outside itself. Heinrich
Schenker developed an analytical system based on
processes involved in the perception of pitch and
tonality which clearly demonstrates the multi-
leveled nature of musical perception and the
frequent repetition of significant motivic features at
different levels. This form of analysis divides
musical perception into foreground, middleground
and background, without these, however, being
sharply separated from one another - a curious
relation to the continuous merging of dimensions
involved in fractal geometry.  Self-similarity
between different levels of structure, frequently
seen in the works of the great classical composers,
is briefly described in the following passage from
Schenker's "Der Freie Sat:" :

“"As they move toward the foreground, the
transformation levels are actually bearers of the
developments and are, at the same time, repetitions
or parallelisms in the most elevated sense - if we
permit ourselves to use the word ‘repetition’ to
describe the movement from transformation level to
transformation level. The mysterious concealment
of such repetitions is an almost biological means of
protection: repetitions thrive better in secret than in
the full light of consciousness.” (p.18)



composition the essential motive is a composed
out third:

(figure 1)

It is found at several levels, from a background
line that guides the overall direction of the phrase;

(figure 2}

through the middleground elaborations that fill out
the principal line:

(figure 3)

to the elegant foreground melodic ormaments that
intensify the musical energy and lend a rather
omate character:

(figure 4)

et L

Schenker to be one of the elemental musical
shapes (urlinie), arising out of the physical nature
of sound through the fundamental musical
phenomenon of the overtone series.

Fractal objects possess self-similarity to an
astonishing degree. In pure non-random fractals
an unlimited number of levels may be strictly self-
similar. Practical limits are reached only in the
reproduction medium (e.g. graphics resolution) or
in human perceptual processes. Fractal objects
may also have random aspects, in which case they
tend toward a modelling of natural objects and
processes. Such techniques have been used with
great success in the synthesis of images of natural
objects by computer. Some famous example are
the fractal mountain scenes synthesized by
Richard Voss and reproduced by Mandelbrot
(Mandelbrot 1983).

The relationship between musical and fractal
structures is clear. Some work in investigating
this relationship has already been done, notably
the study of music as a scaling (1/f) noise by Voss
and Clarke (Voss and Clarke 1975) and the
subsequent experiments by Tomasso Bolognesi in
pitch sets generated by a fractal process known as
Levy flight (Bolognesi 1983). Bolognesi's pitch
sets are seif-similar only in a statistical sense -
similar structures are repeated on different scales
in an unpredictable fashion, according to the
largely random processes he employed. His
experiments remain essendally sophisticated
techniques of dice-throwing to obtain pitch sets.
Of considerably greater interest for the purposes
of this project has been the work done by Charles
Ames of the State University of New York at
Buffalo in recursive programming of musical
structures (Ames 1982); and by Gary Kendall of
Northwestern University in his imiaginative -
transformation  of geometric structures into
musical ones (Kendall 1981).

RECURSIVE TRANSPOSITION

Recursion is a very general programming concept
which has been widely employed as an elegant




problem solving technique in many areas of
computer science. Many fractal processes are in
fact most easily implemented recursively. In
Douglas Hofstadter's’s definition recursion is
"nesting, and variations on mesting.. Stories
inside stories, movies inside movies, paintings
inside paintings, even Rusgian dolls inside
Russian dolls”. The particular musical application
in the context of this research was the ability to
specify a set of intervals which would be applied
recursively to the entire composition, generating
all levels of structure and detail. For practical
reasons this program was first implemented
employing a table of one hundred elements which
together szasistically specified the interval structure
of the composition. Rigidly self-similar structures
could be generated by filling the table with a
single value throughout; statistically self-similar
structures could be generated by the appropriate
distribution of values. In the early versions of the
program this fractal process could be applied only
to pitch and volume aspects of individual notes;
durations remain unchanged, which results in the
constant patter of short note lengths apparent in
FRACTAL STUDY I; an interesting rhythmic
structure is generated by the fractal process at the
phrase length level, however. The process itself
is illustrated graphically below. It consists of a
recursive divide by two operation; that is, the
transposition process is first applied to the entire
composition, which may be several thousand
notes long;
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(figure 5)

each of the two parts formed is likewise divided
into two and the transposition applied;

(figure 6)

each of the four resulting sections is divided into
two, and s0 on; the process continues until the
limit of resolution is reached at the level of
individual notes.

(figure 7)

When the generating interval is, for example, the
upward interval of a fifth (as in the examples
graphed above), the second half of the
composition consists of the first repeated a fifth
higher; the first half consists of two periods, the
second of which is identical to the first repeated a
fifth higher; and so on down to the level of pairs
of individual notes. The same process when
applied to the dynamic aspects of the piece results
in a clearly perceptible structure of frustrated
crescendi.

The interesting structures produced by this
process were primarily the result of two things:
the generating interval pattern chozen and the
divisor in the recursive division operation.
Experimentation with these resulted in FRACTAL



STUDY TWO, which was produced with a divide
by three process and a wider range of generating
intervals than the earlier work. The recursive
divide by thres generated a structure reminiscent
of classical dance forms and particularly of the
rondo, with digressions embedded within
statement and re-statement. FRACTAL JAM was
also produced with this version of the program. It
employs a variety of generating interval sets and

recursive divisors in order to simulate a rather free

- improvisatory jazz ensemble.

THE MONSTER CURVES

The above processes are really only special cases
of 2 much broader category of fractals described
by Mandelbrot as ‘monster curves’. These include
the space filling curves whose unusual properties
were first described by Koch and Peano at the
turn of the century. Mandelbrot has developed 2
practical theory and nomenclature of these types
of fractals which served the needs of this research
quite well (Mandelbrot 1983). Implementation of
these ideas resulted in a much more general
version of the earlier program where transposition
patterns could be described precisely and non-
statistically, and the recursive divisor could be
specified easily. The program was modified to
allow the fractal process to operate on the
durational relationships berween notes as well. In
Mandelbrot's terminology we distinguish two
clements in the process - the INITIATOR and the

GENERATOR. The first is the structure with .

which one begins; in Mandelbrot's examples
usually a triangle, square, or other elementary
geometric figure:

(figure 8)

The generator is the particular pattern that is
recursively applied to the orginating structure to
produce a fractal object:
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(figure 9)

Mandelorot defines a generator in terms of the
number of sides, N, and their configuration, which
is usually given a graphic representation, as above,
In the program described, the generator is specified
in terms of the mumber of steps (corresponding to
N above) and their relationship is specified as a
series of integers representing positive and negative
transpositions. The originator, as before, could be
any pre-existing composition defined by the means
available in MIDIFORTH, but was generally a
simple set of several hundred identical notes. The
duration problem was solved with a more
sophisticated implementation of the core
transposition operators, whereby they 'knew'
whether they were operating on pitch, volume,
articulation or duration data. FRACTAL DUET,
for synthesized saxophones and harpsichord, was
produced with this version of the program.
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(figure 10 - Koch curves)

In the preceding examples the contrapuntal
relationships between musical parts had not been a

part of the generating process. Experiments with
contrapuntally related initiators and generators did
produce some interesting textures and harmonic
progressions, but did not seem to offer the degree
of control that was desired. .

STRANGE ATTRACTORS

For this reason the research changed direction and
tumned to a different type of fractal process as
offering more promise for coherent relationships
between parts. The phenomenon of attractor points
in non-linear dynamical systems is an area of
investigation that has been thoroughly inter-
penetrated by fractal ideas in the last few years
(Mandelbrot 1983). It seems to offer some of the
first clues to an understanding of previously elusive
"chaatic™ behaviour, such as that found in fluid
turbulence (e.g. the swiris and eddies in a rapidly
flowing stream of water). The process itself is -
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uncomplicated; essentially, iteration of a simple
formula results in the formation of "attractor” points
within the aumber plane, areas of relative stability
around which other points accumulate. In one well
studied system, that generated by:

x —3 lambda x(]-x)

The behaviour of the system alters dramatically as
lambda increases; from 2 simple two state
oscillation at lambda< .86237, the system becomes
progressively four state, then eight state, then
sixteen, and so on until a limiting value is reached
at lambda= .89248, upon which it assumes 2
"chaotic” behaviour. It should be noted that
Mandelbrot has determined that this process results
in a fractal dust of dimension approximately .538
(Mandelbrot 1983 p. 195). The range of lambda
values that produce such behaviour, namely
89248<lambda<].000, is known as the "chaotic
region” and abounds in beautiful symmetries and
self-similarities.

It should be noted that the pre-chaotic region
.J5<lambda<.89248 also has self-similar aspects.
The boundary values at which splitting of the
oscillation patterns of the system occur are related
by a constant value which is approached more and
more closely as the sysiem evolves toward higher
numbered stable states. This value was called delia
by irs discoverer, Mitchell Feigenbaum
(Feigenbaum 1981). Its value is approximately
4.669201609... Not only this, but the relation of
the attractor points to one another is also self-
similar, being arranged in a clearly recursive order.
This remarkable fact was also discovered by
Feigenbaum. He named the ratio alpha; its value is
approximately 2.502907... In pracdcal terms what
this means is that there is a self-similarity of details
within an artractor group to the relations between
attractor groups. This relates directly, on the one
hand to the swirls within swirls that are so
characteristic of mrbulent motion; and on the other
to the interrelationship of different levels of detail
apparent in a piece of music.

(figure 11 - fuid turbulence)

The region of lambda between .89 and 1.00 is the
really interesting area however. Not surprisingly
it bears a resemblance 1o the region
lambda«<.89248. The two regions are in fact
symmetrical around the chaotic breakpoint at
-89248; the symmetry can be clearly seen if one
studies the chart in the figure below.

dy= Iy
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(figure 12 - transition from cvclic to chaotic

behaviour) L




The onset of chaos is clearly marked at lambda =
.89248; the shaded area to the right is the chaotic
region. The symmetry i3 apparent as one
observes the behaviour of x ing at lambda =
1.000 and progressing toward lambda = .89. At a
value of 1.00, x is totally random; it can assume
any value within the broad shaded area between 0
and 1. At lambda = 92... however, the broad
band splits into rwo, which means that x can
assume values in a quasi-periodic fashion
somewhere within either of these bands.
Continuing to move to the left, a second splitting
occurs at lambda = 906, at which point x may
assume onme of four values within the ghaded
regions. As may be expected this process
continues 10 the limiting point of lambda =
.89248. Now, even for lambda values within the
chaotic region attractor points may arise but they
do not necessarily do so. The patterns that
cmerge therefore tend to cycle with some
difficulty around stable points. This is the
charactenistic that seems to lend a ‘composed’
quality t pitch sequences generated by this
methed bringing to mind clementary lessons in
a?s:hetics describing ‘unity and variety' in a work
of art.

In addition to the general structural features just
described, the chaotic region contains many
peculiar areas (indicated by the white bands in fig
12) where the entire fractal evolution from regular
to chaotic motion is reproduced in miniature. The
largest band, centered at lambda = .9609...,
shows a remarkable set of transitions involving a
three cycle beaviour,

The method of working with these phenomena
was quite straightforward. After implementing
the function x —> lambda x{/-x) In the
MIDIFORTH computer music environment, a set
of pitches determined by the atractor values
would be generated - essentially a monophonic
line of equal length notes. The pitches could be
mapped within a2 more or less limited range, but
volumes, durations, ardculations, etc were not
affected by the f(ractal process. Next, after
inspecting the generated pitch set, the pitch
regions that corresponded (o attractor groups
would be stripped away using the MIDIFORTH
filter' facility. Since pitch values falling within
any particular attractor group are generally
unevenly distributed for lambda values within the
chaotic region, rhythms of a unique and highly
eccentric nature were generated. These, along

with their corresponding pitch sats, can
greatly in perceived periodicity within the chaonc
region, so a large variety of fractal 'styles' was
possible. After stripping away notes belonging to
particular atiractor groups the resulting parts
would be orchestrated appropriately and recorded.
Thus the musical lines generated are a direct
representation of the behaviour of attractor points
for the chosen value of lambda.

The mimicking of musical intelligence that is
apparent in these patterns seems to lend itself well
to the satiric mode of expression. The two works
produced employing these techmiques therefore
have a socio-musical aspect that goes beyound the
abstract patterning of the previous pieces.
STRANGE ATTRACTIONS is nominally & study
of the arbulence created by a dripping tap, but in
actuality it is a statement on the turbulence of
musical styles in our time. The sink is the
commercial music industry of North America -
the whorls and eddies of musical fashion carmry us
from one piece of flotsam to another until in the
end the plug is pulled and the vortex carries us
down. In ROADS TO CHAOS the fractal
division process described above was appropriated
as a metaphor for a bleak historical view that sees
the evolution of technology as a divisive and self-
destructive force. Both pieces employ many
references to musical styles as an essential feature
beyond the abstract structural schemes drawn
from fractal geometry.
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(figure 13 — map of inverse
of x == lambda x(1-x) )

EUTURE WORK

A major problem arises when attempting to apply
synthetic (i.e. mechanical) self-similarity w0 a



musical structure. The fact is that, unlike a work
of visual art, the various levels of structure are not
perceived in the same way. The problem may be
succinctly described as a perceptual discontinuity
between structural levels. Foreground events, for
example, force themselves directly upon the ear,
requiring only the attention of the listener in order
to be perceived. Middleground events, on the
other hand, require both an active memory and a
conscious effort for their recognition, while
background events require careful listening,
study, and amalysis. Another serious problem
arises from the temporal nature of the medium
itself ~ it is not uniform and symmetrical, as is the
visual field, since later events are affected by
those that preceded them. A clear example of this
is the different treatment accorded antecedent and
consequent phrases of music in everything from
folksong to symphomy. The fractal processes
described above know mothing of such
distinctions, although the strange atractor
methods can sometimes come up with an amusing
(and accidental) imitation. Other problems and
challenges arise out of the computer science side
of this research. A fuily developed programming
environment is required to implement the musical
‘intelligence’ needed to confront these problems.
And the work carried out so far has involved a
narrow sub-set of the fractal methods described by
Mandelbrot; in particular it has not yet touched
upon the the most striking and perhaps best
known type of fractal, the "Mandelbrot Set”.

The harmonic forces active in musical
composition are present in these piecas in only a
rudimentary form. One logical development of
this work would be the ability 1o specify harmonic
strucrures (in a2 Schenkerian sense) as well as
melodic ones. The harmonic structure might be
generated recursively, as with the melodic
squctures described above; and compositionally
related melodic marerial might be fractaily
generated in a second set of operations. Such a
program would require a much more eiaborate set
of operators than have currently been employed,
since they would have to know' about such things
as keys and major and minor forms of intervals.
It would in fact approach something like the LISP
based Schenkerian analysis program written by
Smoliar (Smoliar 1980) with a change in
emphasis from an analytical system to a
- generative one, :

Another extension of this study might be
downward, towards timbral scales of structure.

software-oriented digital synthesizer, why related
fractal processes could not be used to generate
structures at all levels of scale within the
composition. The problem of perceptual
discontinuity discussed above would become
extreme, however, and would surely be the first
problem addressed. These questions and others
point the direction for further work in automated
composition 1o proceed.

(figure 14 - sclf-squ'arcd dragon)
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