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ABSTRACT

The goal of this project is to produce a software musical
instrument using chaotic processes as a sound synthesis
method. Realtime control through MIDI note messages
and continuous controllers is required. Early results are
described, along with suggestions for continuing work

CUBIC OSCILLATOR WORKBENCH

'The driven oscillator with a cubic term, commonly
known as the Duffing oscillator, is defined by the
autonomous differential equations:

dx=y
dy =-Ay-Bx®+G cos(wt)

This system can be

frequency, and spring stiffness, sliders are provided for
overall amplitude and for overall pitch, which is simply
the wavetable playback increment. Numerical display for
all paramelers 1s provided in machine units, except for
driving oscillator frequency , which is given in cycles
per second.

A pair of buttons at the top right of the screen start and
stop sound output. A “kickstart” button reseeds the
dependent variables x and y with reasonable values,
which is frequently necessary since many parameter
regimes produce runaway output (more technically, there
exists an attractor at positive or negative infinity).
Another pair of buttons controls display of the orbit
graph and the time waveform graph, which occupy the
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considered asimple | SPring nulng
form of physical
modelling. The
object modelled is a
rigid beam or spring
vibrating in only
one mode, driven by
asinusoidal
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exciting force.
Parameter A models
the damping force,
or amount of energy
lost to the system,
the cubic term

controlled by B
models the stiffness
of the of the spring,
G is the driving
oscillator force and
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w is the driving

oscillator frequency.
Realtime access to
these parameters is given in the Cubic Oscillator
Workbench, a Macintosh program designed for
interactive exploration of the parameter space (fig. 1).

Graphic sliders for the control parameters appear along
the top left of the screen. In addition to damping force,
driving oscillator amplitude. driving oscillator

figure 1 - Cubic Oscillator Workbench screen

bottom half of the screen. The orbit is simply a graph
of x versus y lor a series of 1000 samples. The various
forms of behaviour can be easily distinguished by means
of the complexity of the image produced (fig. 2). The
time waveform is the actual sample by sample outpul of
the y component, displayed as y versus ime.

The two dependent variables, x and y, produce two



correlated output streams which can be used for stereo
sound, or for monophonic sound and a correlated control
stream.

the superposition of multiple periods in a sub-harmonic
relationship. It is clearly seen in the series of orbil and
wavelorm displays in figures 2a to 2e.
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figure 2 - period doubling progression in the cubic oscillator

TYPES OF BEHAVIOUR

The cubic oscillator system exhibils

several different behaviours which

depend on the settings of the relevant

parameters. Single cycle periodic behaviour is the
simplest; it corresponds to a continuous periodic
waveform in the time domain and to a circle
(topologically speaking) in the orbital map (fig. 2a).
Periodic behaviour of order two and higher is also
possible (fig. 2b-c). Quasi-periodic behaviour results
{rom the super-position of multiple periodic behaviours,
which may be incommensurate (i.e. non-rationally
related). The wavelorm representation shows recurring
similar features (which may never repeat precisely)
while the orbital representation shows several
crisscrossing loops ( fig. 2d). Finally, chaotic behaviour
(fig. 2¢) is represented in the orbital diagram by a
complicated mesh of crisscrossing orbits which grows
progressively thicker with time, and in the waveform
display as a continuous wave without repeating features.

The route to chaos [rom periodic behaviour is often
through a period doubling scenario. This results from

a) pariod 1 b) period 2
¢) period 4 d) period 8 (quasi periodic)
e) chaotic f) impulse-damping behaviour

Ueda (1979) has experimentally derived a preliminary
map of the behaviour of this system.

IMPLEMENTATION

In the first implementation of this system 1t was
possible for integration to be performed (using the
forward Euler method) at a sample rate of about 16khz
on a 25mhz Macintosh Quadra using extended precision
floating point numbers, with all parameters retained in
registers. Reworking the code for 32 bit fixed point (16
bit integer.16 bit (raction) provided a remarkable speed
improvement, running at about 41 khz, even without
parameters being held in registers. When combined with
the additional computing overhead for realtime sound
output to the DACs and for user interface, this drops to
about 22 khz, still adequate for testing. The goal of the
project is to perform the integration on a Motorola
56000 DSP co-processor, which should be casily able to



handle 44,1 khz, perhaps with multiple sound channels
or other synthesis “niceties” such as envelopes or filters.

SUBJECTIVE EVALUATION

"The sounds produced by the system truly camn the name
chaotic. Other terms that come to mind are irregular,
unpredictable, noisy, uncontrollable, dirty and wild. A
particularly interesting feature is that the behaviour for a
given sct of parameters can be very dilferent depending
on the prior state of the system. Technically this 1s due
to (he existence of mulliple attractors at these paramecter
values. For a given set of parameters some attractors
may be chaotic, while others may be periodic or quasi-
periodic. In experimental observation with the Cubic
Oscillator Workbench, it has been found thal when
enlering a region of the parameter space with multiple
attractors, the system tends to fall to the attractor most
similar to its existing behaviour. The addition of a
small perturbation, such as added noise or a small
transient (added with the “kickstart” button) is usually
sufficient for the system to jump to a different altractor.

OTHER APPROACHES

A less direct approach to the application of chaotic
processes to sound generation is represented by the
Lorenz attractor inlerface 1o CSound's ADSYN gencrator
(fig.3). This softwarc module creates an ADSYN
compatible control file, ADSYN.N, with chaotic
trajectories for the frequencies and amplitudes of up to
64 partials. The partials need not be harmonically
related; utilities are provided to generate frequency tables
in harmonic relationship, harmonic with stretched
tuning (positive or negative stretching), inverse (sub)
harmonic relationship and many others.
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figure 3- Lorenz attractor ADSYN interface

FUTURE WORK

A number of improvements are projected for the current
system. The most important is to offload the burden of
numerical integration to a DSP in order to free up the
main processor for user interface and MIDI input
pracessing. The DSP should be able to perform the
integration on multiple simultancous channels as well

as provide amplitude envelopes.

Other enhancements to the basic process include the
injection of small amounts of noise into the data stream
to perturb the oscillator and induce a noisy transient
response. This will reduce its tendency to “lock into™
simple periodic regimes. Driving the oscillator with a
function other than sin or cos might also have this
effect, since the high frequency components in less
“smooth” waveforms could also induce noisy transients.

OTHER SYSTEMS to investigate include:
van der Pol oscillator

dx=y

dy = (1-x%y)-x
double scroll oscillator (Chua's circuit)

dx = A(y-h(x))

dy = x-y+z

dz =-By

[forced negative resistance oscillator
dx=y
dv = a(1-x2)y-x s
y = a(1-x“)y-x"+Beos(ft)

third order piecewise linear system

dx = -A f(y-z)
dy = -f(y-x)-z
dz=y

f(u)=-au+0.5(a+b)( 1 u+11-lu-11)

An extension of the workbench arrangement developed
for the cubic oscillator would facilitate the investigation
of these systems. A generic interface for graphic slider
and MIDI control, behind which various computational
‘engines’ corresponding to one of the above systems
could be installed, would be ideal both for rapid
prototyping and for exploration.
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