
ABSTRACT

Even though alternate musical controllers such as the
Electronic Wind Instrument (EWI) significantly extend
the expressive range of MIDI synthesizers and soft-
ware virtual instruments, the computer-based editing
and manipulation of data produced by these controllers
has remained in an undeveloped state. A primary prob-
lem has to do with the binding of note data to expres-
sive information such as breath controller and pitch
bend data. MIDI, originally designed as a real-time
performance protocol, has very weak binding of such
data into higher-level musical structures; so weak in
fact that even note endings are unconnected to their
beginnings. The author describes a binding paradigm
and data structure which addresses this problem and
which has proven very effective in the manipulation of
recorded EWI MIDI performance. Four further chal-
lenges - data integrity, spurious notes, erratic velocities
and inaccurate rhythm - are described along with the
software solutions which have been developed to deal
with them.

Keywords – MIDI, music performance, electronic
wind instrument

1. INTRODUCTION

Wind controllers greatly extend the expressive dimen-
sion of MIDI. They are arguably the only application
of MIDI which takes full advantage of the potentials
inherent in the MIDI specification (1984). They do this
by generating a rich stream of MIDI data messages
including notes, breath control, pitch bend and other
messages.

However, much of this potential is ignored by com-
mercial MIDI editors such as Apple Logic, Steinberg
Cubase, Digidesign ProTools, and others. The key-
board performance paradigm implicit in the MIDI
specification is assumed in these commercial applica-
tions. While adequate for simulating percussive in-
struments such as drums and piano, most other instru-
ments require some sort of continuous control.

MIDIForth (Degazio 1987, 1988, 1993), the author’s
Macintosh-based MIDI editing system, has evolved to
address this lack. This paper describes recent develop-
ments which focus on the requirements of continuous
performance MIDI instruments such as the Akai EWI

4000 and the Yamaha WX5 electronic wind instru-
ments.

2. VISUAL EDITING

In order to deal effectively with notes and associated
continuous data, a visual editor must be able to display
such data simultaneously. This capability is notably
absent from many commercial MIDI editors. MIDI-
Forth allows the simultaneous presentation of notes
together with breath controller data, pitch-bend data or
both (figures 1-3).

SOFTWARE TOOLS FOR
 ELECTRONIC WIND INSTRUMENT PERFORMANCE

Prof. Bruno Degazio
Sheridan College

School of Animation, Arts & Design

Figure 1. Visual Editor displaying notes only

Figure 2. Notes with breath control data superimposed

Figure 3. Notes with pitchbend data superimposed

3. PROBLEMS WITH EDITING EWI PER-
FORMANCE DATA

3.1 Note/Continuous Data Integrity

A fundamental problem with computer-based manipu-
lation of EWI performance data is that the continuous
control messages - usually breath control (MIDI CC#2)
and pitch-bend - are not bound to the note data to
which they apply. Any application intending to ma-
nipulate the complete performance event - notes plus
all associated control data - must somehow logically
bind the various data together.

A practical method of binding such data consists of
simply including all events contained within the time
boundaries of a given note-on event. For this purpose,
MIDIForth employs as its basic data structure the
atom, defined as follows:

AtomStructure
long: +DurFld \ # ticks to next event
long: +LengthFld \ for notes only, in ticks
long: +AbsFld \ absolute position from start
byte: +StatFld \ MIDI status code
byte: +Data1Fld \ pitch, cc#, PB low, program#, etc.
byte: +Data2Fld \ vel, cc value, PB high, etc.
byte: +TagFld \ editing selection tags
\ total 16 bytes

The start position of a MIDI event is given by its Abso-
lute Position field (+AbsFld). For note events, the
length of the note is contained in the field labeled
+LengthFld . The end position is thus easily calculated
by adding the LengthFld to the AbsFld. A quick search
including all MIDI events contained within these limits
binds the relevant data to the note for subsequent op-
erations. Many of the operations described below
automatically bind continuous data to notes in this
manner. For convenient manual manipulation, a menu
command, Select Within Note is also provided.

However, on recording actual data from an EWI an
immediate complication is discovered: important data
exists outside the start-end boundaries of a note. For
example, the following illustration shows an actual
recorded note with its breath control data superim-
posed (figure 4).

In this example, the first three breath data points and
the final one are all outside the boundaries of the note.
This is characteristic of the behavior of the Akai EWI.
Other EWIs from Yamaha and other companies also
produce continuous data before or after the note.

When the note actually sounds it will do so at a setting
corresponding to the last received data values for

breath pressure and pitch
bend. A problem arises if
subsequent editing of the data
does not take this into account
- there will be a noticeable
alteration in the sound pro-
duced by the synthesizer.

For this reason MIDIForth
includes a function, EWI
Cleanup, which forces the
data integrity of each note
event by adding data, if neces-
sary, to the start of the note.
EWI Cleanup searches through
a recorded MIDI performance
and deletes all breath control-
ler (BC) and pitch-bend data
that exist outside the bounda-
ries of a note. No information
is lost because the routine first
inserts the correct datum at the
beginning of the note, which
is where it would have its first
audible effect anyway. Figure
5 shows the event data after
application of this function.
This function guarantees that
every note event begins with
accurate breath controller and
pitch-bend data.

3.2 Spurious Notes

Another complication comes from the large number of
spurious note messages produced even by expert play-
ers on the instrument. Though these notes are for the
most part inaudible, they interfere with many subse-
quent data operations, including quantization and tran-
scription into common music notation. Figure 6 is an
example of a musical passage as recorded with an Akai

Figure 6. Spurious notes

Figure 5. breath data
cleaned

Figure 4. Extraneous
breath data

Figure 7. Spurious notes melded to adjacent notes

EWI 4000s. Note the short spurious notes that occur at
note transitions.

The MIDIForth function Meld Short Notes automati-
cally searches through a recorded passage and “melds”
(joins) notes shorter than a specified duration into the
adjacent longer note (figure 7).

3.3 Erratic Velocities

Another curious characteristic of EWIs is that the note
velocities they produce are quite inaccurate. This ap-
pears to be due to the fact that the note velocity must
be determined at the beginning of a note, before the
player has had a chance to fully produce a breath enve-
lope. This makes sense in the context of a percussive
instrument such as the piano, but not with a continu-
ously controlled instrument like an EWI. A more cor-
rect velocity value is related to the average breath pres-
sure throughout the duration of a note. MIDIForth
provides a function that computes the average breath
pressure value contained within a given note and con-
verts the note’s velocity datum to correspond. This
approach, though simple, appears to work quite well

in practice, and produces a set of velocity values which
can then be applied to other, more conventional MIDI
instruments, such as a sampled piano.

3.4 Inaccurate Rhythms

Sloppily played rhythms can of course be a problem
with any sort of musical performance, not just with an
EWI. However, in commercial applications, software
methods exist, usually called quantization, which are
used to correct rhythmic errors. Unfortunately, com-
mercial quantization algorithms do not work with re-
corded EWI performances. The difficulty is related to
the problem of data binding discussed in section 3.1.
An EWI note event consists of an entire suite of MIDI
messages, including but not limited to breath data and
pitch-bend, which must be moved as an integral unit.
Commercial software, ignoring this requirement, sim-
ply moves the note message to a rhythmically correct
position, leaving the associated continuous data where
it was. This of course results in a completely unusable
mess.

In addressing this problem, the first step is of course to
implement a binding protocol like the one described to
ensure that notes move along with their associated
data. However, this is not sufficient to produce an ac-
ceptable result. Two other characteristics of the EWI
MIDI stream are of critical importance. They are, a)
note overlap (tonguing) and b) the fact that the data
stream is more or less continuously sampled.

3.4.1 Note overlap concerns the relative position of
two notes in time. If the the second note begins before
the first note ends, they are said to be overlapped or
legato (figure 9). If the first note ends before the sec-
ond begins (by as little as even one tick) the notes are
not overlapped and are said to
be tongued, detached, stac-
cato, etc as the case may be
(figure 10). It is this feature
of the data stream that a
skilled player controls by
means of subtle changes in
tonguing.

A problem arises if the integ-
rity of the overlaps is lost
during the course of rhyth-
mic manipulation or other
editing. The edited perform-
ance will have a different
“tonguing” than actually
performed by the player.
Therefore, any form of auto-
matic rhythmic manipulation
must take into account the
status of overlaps between adjacent notes.

3.4.2 The second complication arises from the fact
that an EWI note event is not a discrete data point but
is a stream of related events spread through a definite

Figure 8. Erratic Note velocities produced by EWI

Figure 8. Note velocities adjusted according to average
breath value through note.

Figure 10. Overlapped (legato)
notes.

Figure 11. Tongued (detached)
notes.

time. A simple example illustrates this. Suppose we
have a legato musical passage where a note has been
recorded a little later than it should have been (figure
12). If we simply slide the second note event and its
associated data to begin at the correct position (the
light vertical line) we produce a collision with the
breath control data at the end of the preceding note
(figure 13).

The correct method of handling this problem was de-
rived, after much trial and error, from the practice of
cinema dialog editors, who regularly use time-
stretching software on audio files to fit individual
words to lip movements on screen. A time-stretching
approach was applied to individual notes, compressing
or expanding their duration by a factor exactly produc-
ing the desired position in the following note (figure
14). When carefully implemented, this procedure has
the advantage of also preserving tonguing overlap in-
tegrity, thus solving both problems.

4. ACKNOWLEDGMENTS

The development of MIDIForth has been funded by
the Canada Council for the Arts and the Ontario Arts
Council.

The software described has been developed on the
Macintosh computer using Carbon MacForth from
MegaWolf Software Inc., New Haven, Connecticut.

5. REFERENCES

[1] Degazio, B., “The MIDIForth Computer
Music System”, in Proceedings of Printemps
Electroacoustic, Montreal, 1987

[2] Degazio, B., “The Development of Context
Sensitivity in MIDIForth” in Proceedings of
the International Computer Music
Conference, Koln, 1988

[3] Degazio, B., “New Software Composition
Tools” in Proceedings of the Fourth Biennial
Arts and Technology Symposium, Connecticut
College, New London, Connecticut, 1993

[4] Degazio, B., “A Computer Based Editor for
Rhythmic Structures” in Proceedings of the
International Computer Music Conference,
Hong Kong, 1996

[5] MacFarland, Ward, Carbon MacForth,
MegaWolf Software, New Haven,
Connecticut

Figure 13. Second note adjusted, collision with preceding
note.

Figure 14. Second note adjusted, preceding note time-
stretched.

Figure 12. Legato passage, second note slightly late.

